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CONVERGENCE OF A HIGH-ORDER SEMI-LAGRANGIAN
SCHEME WITH PROPAGATION OF GRADIENTS FOR THE
ONE-DIMENSIONAL VLASOV-POISSON SYSTEM*

NICOLAS BESSEf

Abstract. In this paper we give a proof of convergence of a new numerical method introduced in
[N. Besse and E. Sonnendriicker, J. Comput. Phys., 191 (2003), pp. 341-376] for the Vlasov equation.
The numerical method is based on the semi-Lagrangian principle and the transport of the gradient of
the statistical distribution function in order to get a high-order and stable reconstruction. These kinds
of new schemes have been successfully implemented on unstructured meshes of four-dimensional phase
space (cf. [N. Besse, Etude mathématique et numérique de l’equation de Viasov sur des maillages
non structurés de l’espace des phases, thése de ’Université Louis Pasteur, Strasbourg, France, 2003;
N. Besse, J. Segré, and E. Sonnendriicker, Transport Theory Statist. Phys., 34 (2005), pp. 311-
332]). In order to make a rigorous proof of convergence of this method and simplify the convergence
analysis, we have considered the periodic one-dimensional Vlasov—Poisson system in phase space on
a grid. The distribution f(¢,z,v) and the electric field are shown to converge to the exact solution

4| 4l
values in H' norm. The rate of convergence is of O(A#? + A;th" + AUTtH)’ a€N? ol < 1.
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1. Introduction. The numerical resolution of the Vlasov equation is most of the
time performed by Lagrangian methods such as particle-in-cell methods which consist
of approximating the plasma by a finite number of macroparticles (see Birdsall and
Langdon [10] for more details). Although this method allows us to obtain satisfying
results with a small number of particles, it is well known that the numerical noise
inherent to the particle method becomes too significant to allow a precise description of
the tail of the distribution function, which plays an important role in charged particle
beams. To remedy this problem, Eulerian methods which consist in discretizing the
Vlasov equation on a mesh of phase space have been proposed. One of these methods
is semi-Lagrangian methods, which have efficiently been implemented using parallel
computers [15] and give considerable promise in displaying the detailed structure of
distribution functions in weak densities regions.

The author extends semi-Lagrangian schemes on unstructured meshes on two-,
three-, and four-dimensional phase spaces with different kinds of high-order local in-
terpolation operators and with the possibility of having a positive and conservative
method by introducing a linear combination of low-order solution and high-order solu-
tion tempered by a limiter coefficient (cf. [5]). The interpolation operator considered
involves the knowledge of the gradient of the distribution function which is obtained
by solving a transport problem on the gradient or by differentiating the convected so-
lution. For more details on how we get these schemes we refer the reader to [5, 8, 9].
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640 NICOLAS BESSE

To simplify the convergence analysis we have considered this scheme on a uniform
grid, without limiter coefficient, for the one-dimensional Vlasov-Poisson system.

Let us note that a first work on the convergence of one-dimensional particle meth-
ods is stated in [23], where Neunzert and Wick consider nonuniform initial loadings of
particles asymptotically distributed with respect to initial data. Cottet and Raviart
[14] present a mathematical analysis of the particle method for solving the one-
dimensional Vlasov—Poisson system where uniform initial loadings of particles are
considered. Then a lot of authors have studied the convergence of particle methods for
the multidimensional Vlasov—Poisson system [18, 27, 28, 29]. They have also proved
convergence results on random and deterministic particle methods for the Vlasov—
Poisson-Fokker—Planck kinetic equations [21, 22]. Moreover Glassey and Schaeffer
have done the convergence analysis of a particle method for the relativistic Vlasov—
Maxwell system [20]. Schaeffer [24] has proved the convergence of a finite difference
scheme for the one-dimensional Vlasov—Poisson—Fokker—Planck system, and Filbet
[17] has shown the convergence of a finite volume scheme for the one-dimensional
Vlasov—Poisson system. Finally the author [7] has proved the convergence of a semi-
Lagrangian scheme on unstructured meshes (triangulation) of phase space in which
a linear reconstruction is used, for the one-dimensional Vlasov—Poisson system. In
the latter the author obtains a convergence rate in O(At? + h? + h?/At) when
f € €%([0,T] x R, x R,) (best convergence rate is in O(h*/3) when At = h?/3)
and a rate in O(At + h+ h/At) when f € W1H*°([0,T] x R, x R,) (best convergence
rate is in O(h'/?) when At = h'/?).

Although a lot of papers present satisfactory numerical results using semi-
Lagrangian methods [1, 2, 5, 13, 16, 25, 26|, few rigorous mathematical results on con-
vergence analysis of semi-Lagrangian methods have been stated. Despite interesting a
priori estimates that have been pointed out (cf. [3, 4, 16]), a lot of work still remains
to give complete and rigorous results in more general situations. The more difficult
step in the convergence analysis of semi-Lagrangian methods is to obtain a stability
result for the interpolation operators. If stability results in the W norm seem
inaccessible for high-order interpolation operators because of the Runge phenomena
(artificial oscillations, whose amplitude increases with the degree of the polynomial
in the case of Lagrange interpolation, appear at the edges of finite elements), a more
appropriate mathematical framework is H' stability. If Fourier analysis tools such
as Fourier series are useful for proving H! stability in case of grids, for unstructured
meshes such as triangulation, convenient mathematical tools are lacking and have to
be developed in the future. Nevertheless new results on convergence analysis of classes
of high-order schemes can be found in [6].

This paper is organized as follows. In the first part we present the continuous
problem. In the second part we expose the discrete problem and the numerical scheme
to solve it. Then we study the convergence of our numerical scheme.

2. The continuous problem. Denoting by f(t,z,v) > 0 the distribution func-
tion of electrons in phase space (with mass normalized to one and the charge to plus
one) and by E(t,x) the self-consistent electric field, the adimensional Vlasov—Poisson
system reads as

af  of af

+oo
(2.2) )=o) = [ fta o1,
x — 00
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CONVERGENCE OF A HIGH-ORDER SEMI-LAGRANGIAN SCHEME 641

where x and v are independent variables. We consider a periodic plasma of period L.
Hence in (2.1) and (2.2) we have z € [0, L], v € R, ¢ > 0, and the functions f and E
satisfy the periodic boundary conditions

(2.3) f(t,0,v) = f(t,L,v), wveR, t>0,
and
1 L “+oo
(2.4) E(t,0)=E(t,L) < f/ / flt,z,v)dvde =1, t>0,
0 —0o0

which means that the plasma is globally neutral. In order to have a well-posed problem
we add to (2.1)—(2.4) a zero-mean electrostatic condition

L
(2.5) / E(t,x)dx =0, t>0,
0

and an initial condition
(2.6) 0,2,0) = folw,v), w€[0,I], veR.

Besides, by assuming that the electric field E is smooth enough, we can solve (2.1),
(2.3), and (2.6) in the classical sense as follows. For the existence, the uniqueness,
and the regularity of the solutions of the following differential system, we refer the
reader to [11].

We consider the first-order differential system

%(t;s,x,v) = V(t;s,z,v),

av
E(ta S,l‘,’U) = E(t,X(t;S,I,U))

2.7)

and denote by t — (X (¢;s,2,v), V(¢ s,x,v)) the characteristic curves, which are the
solution of (2.7) with the initial condition

(2.8) X(s;s,z,v) =z, Vs;s,z,v) =wv.
Then the solution of problem (2.1), (2.6) is given by
(2.9) ftw,0) = fo(X(0:t, 2,0), V(0;t,2,0), @, veR, £=>0.

We note that the periodicity in x of fo(z,v) and E(¢,x) implies the periodicity in x
of f(t,x,v). Moreover as

‘ A(X, V) ’ _
az,v) |

we get

1 L +o0o 1 L “+o00
—/ / ft, z,v)dvdr = —/ / fo(x,v)dvdz = 1.
L 0 —oo L 0 —oo

Therefore, according to the previous considerations, an equivalent form of the
Vlasov—Poisson periodic problem is to find a couple (f, E), smooth enough, periodic
with respect to x, with period L, and solving (2.2), (2.7), (2.8), and (2.9).
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642 NICOLAS BESSE

If we introduce the electrostatic potential ¢ = ¢(t, x) such that E(t, x)=—0,¢(t, ),
and if we denote by G = G(x,y) the fundamental solution of the Laplacian operator
in one dimension with a periodic boundary condition, therefore we obtain

Bt z) = /OL K(z,y) (/j £ty v)do — 1) dy,

where

/N

%—1), 0<z<y,
K(x;y) = *(()"IG(JZ,y) =
, y<z<L.

=

2.1. Existence, uniqueness, and regularity of the solution of the con-
tinuous problem. In this section we recall a theorem of the existence of a classical
solution for the Vlasov-Poisson system. The following theorem gives the existence,
the uniqueness, and the regularity of the classical solutions, global in time, of the
Vlasov—Poisson periodic system in one dimension. Let us note that a theory of weak
solutions (in BV spaces) for the Vlasov equation has been recently developed in [12].

THEOREM 2.1. Assuming fo € €} ,., (R x Ry) (continuously differentiable
functions which are periodic with respect to x and compactly supported with respect to
v), positive, periodic with respect to the variable x with period L, and Q(0) < R, with

R >0 and Q(t) defined as

Q) =1+sup{|v|: 3z € [0,L], 7€]0,¢]]| f(r,z,v) #0},

1 L +oo
Z/ / fo(z,v)dvdx =1,
0 —o00

then the periodic Vlasov—Poisson system has a unique classical solution (f, E) periodic
in x, with period L, for all time t in [0,T], such that

and

f€E (0.T:%, per, Ry x Ry)),

C,pery

E €€ (0,T;%) per, (R))
and there exists a constant C = C (R, fo) dependent on R and fy such that
Q(T) < CT.

Moreover if we assume fo € €7, (RyxR,), then (f, E) € €)"(0,T; 6 e, (Ra X
Ry)) x €0, T; %y, (R)) for all finite time T.
Proof. For a proof we refer the reader to the treatise by Glassey [19]. 0

3. The discrete problem. This section presents the description of the numeri-
cal scheme. Sections 3.1-3.3 are devoted to some notation and definitions (definitions
of the interpolation operators and the transport operators in order to discretize in
time and space the nonlinear transport equations, on a fixed phase-space grid). Sec-
tion 3.4 resumes the algorithm in a simple way and refers the reader to the previous
subsections for more details.
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CONVERGENCE OF A HIGH-ORDER SEMI-LAGRANGIAN SCHEME 643

3.1. Interpolation operator. Let Q = [0, L] x [-R, R], with R > Q(T), and
let M;, be a Cartesian mesh of the phase space 2. The grid My is given by a
first increasing sequence (x;);cqo,...,n,} of the interval [0, L] and a second increasing
sequence (v;);eqo,...,n,} of the interval [-R, R].

Let Az; = z;41 — x; be the physical space set and Av; = v;11 — v; be the velocity
space set. In order to simplify the convergence analysis we suppose that Ax; = Ax
and Av; = Av. We call h a generic discretization parameter which stands for Az or
Av. We define the one-dimensional Hermite interpolation operator IZL{ as

If?f(z)\[zi,zm] = f(2)¢i(2) + f(zis1)0i1(2) + F(z)i(2) + f(zip1)vina (2),
where
= B zen)?l(m = zi) — 22— 2)] = Bz z)?
d)l( ) - (Zl _ Zi+1)3 ’ 1/)1( ) (Zz _ Zi+1)2 ’
R et e I

and the one-dimensional Lagrange interpolation operator of degree three I,f as

i+2 i=k+2 (2 — 2)
Iff(z)hzi,zm] = Z f(z)Ei(2),  where £}(z) = H ﬁ
k=i—1 i:i?kégl v

Let 6(y,y;) = 1 if y = y; and zero otherwise; then we consider H;, the interpola-
tion operator defined by Hpf(z,v) = Z;V:”O I f(z,v;)6(v,v;) for advection in the

a-direction and Hy, f(x,v) = Zivjo I f(z;,v)8(x, x;) for advection in the v-direction.
In the same way we define £, thanks to I}f.

3.2. Transport operators. In this section we introduce some transport opera-
tors. Let Sy ¢ be the translation operator defined by Sy, ¢ f (¢, z,v) = f(t,x — h,v =§).
We suppose that ¢t € [t",#"+1] and then we define 7'10’0, 7'20’07 7—11,0’ ’2'10’1, ’2'21’0, and
70! as follows:

7—10’0f(t7 fE,’U) = f(t7x — ’UAt/2,’U)7
/TQO?Of(ta .Z‘,U) = f (t,I,U - AtE(thrl/z,IE)) y

T f (b w,0) = T f(t,w,0)

=0, (f(t,x — vAt/2,v)) = O f(t,x — VAL/2,v),
T f(t z,0) = 8, T f(t, x,v)

=0, (f(t,z — vAL/2,v))

=0, f(t,x — vAt/2,v) — %&Ef(tx — vAt/2,v),
T, f(t,2,0) = 0T f(t,2,v)

=0, (f (t,x, v— AtE(t"+1/2,x))>

=0,f (t, z, 0 — AtE(" /2, z))

— AtO,E (t"H/Q,x) By f (t,x,v _ AtE(t”+1/2,ac)) ,
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644 NICOLAS BESSE

7;071f(t7 xz, U) = ail%ovof(u €z, U)
=9, (f (t,x,v - AtE(t"+1/2,x))) =0, f (t,x, v— AtE(t"“/Q,x)) :
where E(t, x) is the solution of the Poisson problem (2.2) and (2.5). For a given couple

(2, v;) there exists a real 8 € ]0,1[ and an integer m with (k+m,l) € M, such that
T — AL/2 = Zppm + O Az, We set

52
¢o(z) = %(h+2z)(h—z)2, P1(z) = E(Sh—lz),
z 22
volz) = Z5(h— 2, (2) = S5z —h),

where h denotes Ax or Av. Therefore, using the notation fr;(t) = f(t, zx,v;) and
O fra(t) = (0uf)(t, p, vy), we define 7,70, 9, and T, as follows:

(io’of(t))kl = (Svaty2,0Hnf) (t, zk, 1)
= Fuini(D60(O4AT) + Frisr 1 ()01 (01 A7)
+ O frnti, 1 () V0 (0x A) + Op frrntrt1,1(B) Y1 (0 Ax),
(ZH°7®), = (SonrjeodsHaf) (tzwm)
= Frtkd (0006 AT) + frniir1,0(t) 1 (0rAz)
+ Or frnt k1 ()0 (0k AT) + Os frntrer1,1(1) Y1 (O A),

~ At
(Zo’lf(t))kl = (Svaty2,0Ln0u f) (t, 2k, v1) — = (Svat/2,00:Hif) (t, zk, vi)

k+2
> Oufmria®E (m+ i+ 0)Ax))

i=k—1
S D600 + 11006101 )
+ O frn ket (D)0 (O AL) + O frn g iy 1,0 ()1 (0 A) ).

Here we have used the Lagrange interpolation of degree three on the gradient in order
to keep high-order accuracy.

Then we introduce the following two Poisson problems:

(P) { (;‘;Eﬁ“/z) (x) = /ﬁo’ofh(t”)dv— 1, /OL By (@)dr =0

and

m%(i@@ﬁmwmLﬁ%mmu4%$ﬂwﬁmma

In order to discretize (P) and (P’) we use a finite difference formula of order four for
the z-derivative and a quadrature formula of order four for the integration in v. As a
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CONVERGENCE OF A HIGH-ORDER SEMI-LAGRANGIAN SCHEME 645

consequence we have the following two schemes:

1
m{8(En+l/2($k+1) *EZ+1/2(!E1<—1)) (EZ+1/2( k+2) *Ezﬂ/z(fl?k—Q))}

R (R

4V

+4Z(TOO t”)k +2Z(TOO t")J},

l,odd l,even

B (wo) + BT P () +4 Y BYT VR @) +2 Y BT (@) =0,

l,odd l,even

(Ph)

12A Tong S0 En+1/2(17k+1) 5zEZ+1/2(Ik—1)) - (31EZ+1/2(5%+2)

e onan) = S (B00),, (700,

+4Z(710 t")k +2Z(Tlo t”)J},

l,odd l,even

6xEZ+1/2(xo)+8IE,?+1/2(36N1)+4 Z BmE,?+1/2(xl)+2 Z 5IEZ+1/2(331)=0.

l,odd l,even

(Ph)

As we choose periodic boundary conditions in the x-direction we have
1/2 1/2 1/2 1/2
By @i an) = By @), 0B wnn ) = 0By (@), 1€ 2

Finally we build EZH/ 2(37) by using the Hermite interpolation operator Z,?, and,
with x = z; + 0Az, 0 < 0 < 1, we get
= E}?H/Q(%)%WA?U) + E}?+1/2(xi+1)¢1(9A$)

+ O, EN T2 ()10 (0AZ) + 0, B (244101 (0AT).

n+1/2
Eh (x)l[ziv“’i+1]

For a given couple (xy,v;) there exists a real §; € ]0,1[ and an integer m with (k,1+
m) € My, such that v; — AtEZH/Q(a:k) = vyym +0;Av. Therefore, using the notation
Op [0 (t) = (0u f) (¢, zk, 1), we consider the transport operators ’ZA;O’O, 731’0, and 7,
defined by

@O’Of(t,x,v) =f (t,mw — AtE;lL+1/2(9c)) ,

T f(t 2, 0) = 0,10 f(t,x,v)
=0, (f (t,m,v - AtE,TLLH/z(a:)))

=0, f (t, v — AtE,’j“/Q(x))
fAtﬁmE;LH/Q(x)avf (t, z,v— AtE;L'H/z(x)) ,

77 f(t0) = 0,1, f(t2,v)
=0, (f (t, T, v — AtEZ+1/2(m))) =0,f (t, T,V — AtEZH/Q(ac)) ,
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646 NICOLAS BESSE
and 7,0, 7,"°, and T,)", defined by

(Z0F®), = So.sem Haf) (t.2,v1)
= frm+1(t)P0(01A0) + fimii+1(t)P1(0,Av)
+ Oy fre,m+1(£)100(01A0) + Oy fre,m+141 (1)1 (6 Av),
(So,atE, LrOz f) (t, xp, v1) — AtaxEZH/Z(wk) (So,atE, OvHRf) (t, Tk, V1)

1+2
= Z a;cfk,m+i (t)é?((m +i+ HZ)AU)

i=l—1
— AtaxE}?Jrl/Q(CCk){avfk,m+l(t)¢50(elAv) + frmsir1 (D)1 (61Av)
+ 8vfk:,m+l (t>¢0 (elAU) + 8”fk7m+l+1 (t)wl (HlAv)}’
= So.aem, 0 M) (1 2k, v1)

= Frma1(D)P0(01A0) + frmrir1(t)dr1 (01 A0)
+ By et (1) Do(01AV) + By fr 1401 (£) 11 (,A0).

(Z°rm)

ki

(21 m)

Let us notice that the transport operators ’]N'la and ’]3“ act only on a Cartesian grid
function and that the operators 7;%, 75%, and ’?20‘ act only on functions defined in
a Cartesian coordinate system. Therefore when we make the composition of these
operators we must take into account this constraint. In order to be more precise we
give an abstract example of the composition of such an operator. Let ¢ and ¥ be two
applications from R? into R?:

¢: R®—R p: R—R

(@0) — p(a,) = (@1(2.0), o, v) ) v
’ ’ T ' =(¢1($av)7¢2($7v))-

Let 'y and I'y be two transport operators which act only on functions defined in a
Cartesian coordinate system. The operators I'; and I'y are defined as follows:

Flf(x7v) = f((pl(x,v),cpg(x,v)) and FQf(:E7U) = f(i/’l(ﬂfvv)ﬂ/&(%v))-

Let us now compute I'y o 'y o Ty f(z,v). First by applying I'y to f we get
Tiol 0l f(z,v) =T1 oDy f(w1(x,v), pa(x,v)).

Now the function f(-,-) is no longer defined in a Cartesian coordinate system, but
it is defined in a curvilign coordinate system given by the mapping ¢. Nevertheless
there exists a function g defined in the original Cartesian coordinate system (x,v)
such that g(z,v) = f(e1(z,v), p2(x,v)). We can now apply the operator I's to ¢, and
we obtain

Fyoly ol f(x,v) =Ty olag(x,v)
=T'1g(¥1(z,v), ¥2(z,0))
= Flf(@l(%(xav)ﬂﬁz(fvv))a@2(1/)1(3371))’1#2(%“)))-

Following the same argument as before, there exists a function kA which is defined in the
original Cartesian coordinate system (x,v) such that h(z,v) = g(¢1(x,v), Ya(z,v)).
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CONVERGENCE OF A HIGH-ORDER SEMI-LAGRANGIAN SCHEME 647

Therefore we get
I'MoTlgol f(x,v) =T 0Tag(z,v) = T1g(W(z,v),¥2(x,v)) = T1h(z,v)
= h(p1(z,v), p2(z,v))
= g(1(p1(z,v), p2(2,0)), Ya(p1(z, v), p2(z,v)))
= f(e1(1(p1(,v), p2(x,v)), Y2(p1(z, v), p2(z, v))),
P2(Y1(p1(z,0), p2(z,v)), Y2 (p1(z,0), p2(z,v)))) -

3.3. Notation and definitions. In this section we introduce some notation and
definitions. The grid function f = {fi ;} j)em, belongs to functional space L3 (€2) if
the norm | - [| 12 ) defined as

1/2
2

Hf”LfL(Q): AzAv Z | fij

(1,5)EMp

is uniformly bounded.
Let

G: M, — R?
(27.7) I (Gli,jaG%,j)a
with G1, Go € Lj (). Then we define the norm || - ||z ) as

IG1Z: 0y = G113 @ + IC2ll3 0y-

Let p and v be the vectors (po, ..., 4j,...,pn,) and (vo,..., v, ..., VN, ), with
0 < pj,v; < 1forall (4,) € [0, Ng] x [0, N,]. Then we define the norm || - || 12 o~ by

1/2
[fllzz avv = | AzAv Z | Fitsy i |
(1,5)EMp
We also define the translation operator 7, , as follows:
(TMVf)i,j = fi+uj,j+w = f(z; + Nij’vj + v;Av).
We continue by introducing the space £>°(0,7T"; X) defined by

0% (0,T; X) = {f:{to,...,tM}—>X|MAt:T,

1£lle= i) = max [1F(E)]Lx < oo},

where X denotes a functional space with norm ||.||x, and the norm || - ||z defined by

[ fllLze = (x| | fi4] -

We introduce now the notation
T, Te{N %0 5%]

where o = (a1, a2) € {(0,0),(1,0),(0,1)}, with |o|] = a1 + a3. In order to simplify
the notation the following conventions are used:

TO,I

TI,O
VT:< )’ 0°f € {0°0F,010F,0% 1} = {£.0.1.001}.
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648 NICOLAS BESSE

3.4. The numerical scheme. We suppose that we know f,(t") = { s O £l
Oy Z”j} () EM” Therefore the numerical scheme which allows us to go from time ¢

to t"*! and compute f5(t"*1) = { {7, 0, £, 0, £

can be described in
i,J 1,] i,j }(i,j)th

four steps:

(A1) We evaluate the distribution function and its partial derivatives at time " at
the foot of the field-free characteristics starting at {(zx,v1)}(x,)em, at time
t"*t1/2 using L, and Hy,, the Lagrange and Hermite interpolation operators,
respectively. Then we obtain three new grid functions: One approximates
the particle distribution, and the other two approximate its gradients. These
actions are described by the transport operators 7,%. The superscripts denote
the position or velocity gradient under consideration.

(A2) The output from (A1) is integrated with respect to velocity (by a quadrature
formula of order four) to provide an approximation for the density and its
gradient at time ¢"+1/2, which are then substituted into the Poisson equations
(P) and (P},) to compute the approximation of the electric field and its
gradient at time ¢"*1/2, respectively.

(A3) Therefore the result obtained from (A1) is evaluated at the foot of the velocity
characteristic starting at {(zx, v;)} k,)em, at time "1 with the acceleration
field found in (A2) using £;, and Hj, the Lagrange and Hermite interpola-
tion operators, respectively. Then we obtain three new grid functions: One
approximates the particle distribution, and the other two approximate its
gradients. These actions are described by the transport operators 7%, with
the superscripts denoting the appropriate gradient under consideration.

(A4) Between time t"*1/2 and t"*!, we apply step (A1) to the output from (A3).
This action is described by the transport operators ’]N'lo‘. Then we obtain
fr(t"h), the distribution function and its gradients at time ¢+, which are
the new initial data for the algorithm (A1l)—(A4).

By using transport operators defined in section 3.2 the numerical scheme can be
written as

(i), = (T o T o T futY)) o lal <1, k€ [0, N, L€ [0,N,],

)

with (9% f)) = (0%fo)p+ lal <1, as a discretization of the initial data fo, 0% fj (zo +
L,v) = 0“f (zo,v1), |of < 1, forall I € [0,N,], the boundary condition in the
x-direction, and 0% f/(x,v;) = 0, for all |y| > R, for all z € [0,L], || < 1, the
boundary condition in the v-direction.

Let us note that the method presented in this paper belongs to the class of semi-
Lagrangian methods but has the distinctive feature of using a splitting a la Strang for
the operators associated to the transport of the distribution function and its gradient.

4. Convergence analysis. Let us state the convergence theorem and give the
a priori error estimates.

THEOREM 4.1. Assume that f € €%(0,T;%2 ... (Re X Ry)), is positive, and
is periodic with respect to the variable x with period L; then the numerical solution
of the Vlasov—Poisson system (fy, Er), computed by the numerical scheme exposed
in section 3.4, converges towards the solution (f,E) of the periodic Vlasov—Poisson

system, and there exists a constant C = C(||f @2(0,y4(2))) independent of At, Aw,
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and Av such that for |a| < 1 we have

Azt-lel 4 Apt-lel
At ’

+(Aa;‘lJrAv‘*) <1 Ax 1)>

Azlo] T A

||aaf - 8afh||l°°(O7T;L’21(Q)) S C(At2 +

At At

and

10°E = 0% Enl| 1~ (0,71 (0.0)) < C<At2 + Azt + Av* + Azt

(Az* + Av?) Az 1
~ (14 ==+ =
Azlel At At
Aztlel 4 Agpd=lal
+ ° )

Remark 4.2. Theorem 4.1 tells us that the convergence occurred with a rate in
O(ALP+At Azl Avt=lel)) o e N2 |o| < 1. If f € €1(0,T;672,.,. (R.xR,)),

C,pET 1
the convergence rate will be in O(At + At~ (Az2~lel 4 Av2~lel)) o € N2 |o| < 1.
Idea of the proof. We want to evaluate the global error at the time t"*! in the
L%L norm

« n+1 _ le% n+1 o4 n+1
[0%€" ™ L2 ) = [0 F ") = 0% fu(t" )| 2 (0)-
Therefore we decompose 9 f(t" 1, xy,v) — 0% fr, (1", 21, v;) as follows:

IUf(™ T wp,vy) — 0% (8" g, vp)

(1) = O u) — (T8 0 T 0 T F(17)),,

(12) HI 0T o TR () — (T o T o T (1),
(13) (T Ty ot rn), — (T T o (),
(14) (T Ty o TR ~ ™), -

In order to estimate ||0%e" 1 |22 () we will estimate the four right-hand terms of the
previous equation. These estimates are described in the following section.

A priori estimates. The following lemma gives an estimate for the term (I1),
which can be viewed as a discretization error in time.

LEMMA 4.3. Assuming that f € €2(0,T;62,.,. (Ry X Ry)), then there exists a
constant C' such that for |a] <1 we get

[0 (7 +) — T o Tt o T 1 (1) 1 gy < OO
Proof. On one hand we can write

FE L a0) = fEPTL XL o), VL 2 )
= f{Em X (54 0), V(T 2, 0))
= f(ﬂLvX(tn)vv(tn))
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and
of .
%(t +1,£L‘,’U)
Vf(tn+17xvv) =
of
—=(t"T1 z,v)
av ) )
_ %(t ) %(t ) 8X(t , X(E"),V(t))
oX ov of

S o )\ e xen, ven)
— V(X V )V, X (), V().

Now we introduce Ty and Ty defined by

0,0 0,0

T 1,
1,0 _ 1,0

T=| 7 |, T=| 7
0,1 0,1

7 1,

On the other hand we get
Ti0Too Ty f(t") = Ty 0Too Ty f(t", x,v)
ft" x —vAt/2,v)
=Ti0Ty | Ouf(t™, x—vAt/2,v)
o f(t",x — vAL/2,v) — BLO, f(t", & — vAL/2,v)

f" z— v% + AthE(t”H/Q,x),v — AtE(t"H1/2 1))

Ouf (17,1 — vAL 4+ AL R(mt1/2 1) o — AtE(1"+1/2, 7))

— At E(t"H1/2 2)

=T X{avf(tn,l’ _ ’U% + %E(tn+1/27x), v — AtE(tn+1/2’x))
7%82?](‘(2577,71, _ v% + ATtQE(t”H/Q,x),v — AtE(t"F1/2 g))}
Buf(t, — vht 4 AL B 1/2 1) v — AtE(t"H1/2 1))

AL, f(t x — v+ AL B2 2), 0 — ALE(A"Y?, 1))

F X @), V("))

= | G 0 X, V) + G X)) |
0X Gy T o X(t"),V

5y 0 f (", X(A"), V(")) + ()0 f(¢", X(¢"), V("))

where

V(4 Atz n+1/2
X(t ):m—vAt—i—TE(t ,x — vAt/2)
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and
V(") =v— AtEW" Y2 2 — vAL/2).

A Taylor expansion gives

X(tn+1/2) _ (x _ UAt/Q) _ X(t"+1/2) _ (X(tn+1) _ V(tn+1)At>

2
(4.1) — X(t"+1/2) _ (X(tn—H) _ A2tX(tn+1)>
= O(A?).
By using (4.1) we get
Vi) - 7y = v - (Ve - s (02, ) - vesn )

= V(") — (V) — AtE (12, X (tF1/2) + O(At?)))
(V tn+1) AtE(tn+1/2 X(tn+1/2)) O(Ats)
= (t”) V(") + AtV (£ T1/2) 4 O(AFP).

We deduce that
sup{ OV ("t Tz w) — (‘30“7(7,‘";7,‘"“,1‘,11) | V(x,v) € [0,L] x [-R,R], |a| < 1}
< CAP.

In the same way we have
X(tm) - X (¢

At? At
_ X tn X tn+1 AtV(t"+1) + TE (tn+1/27X(tn+1) _ V(tn-‘,-l)))

2

2
X (") — AV (7 + %E(t”Jrl/Q,X(t"“/z) + O(At2))>

At?

Xt — AtX (¢ + 2X(t”+1/2)> +0O(AtY)

At?

2X(t"+1)> + O(AE3).

2
(X (") — AtV () + ATtE(t”“/Q, X(t”“”))) + O(AtY)
(X (") — AtX (1) +

It follows that
sup { X (1) — 9 X (t7)

We note that

(z,v) € [0,L] x [-R, R], |a| < 1} < CAP.

X (t™) = X5t ag,v), Vi () = V(" ap, vr).
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Finally we get

(Ti 0Ty o T f(%)) . = F(%, Xua(t%) + O(AF), Vs (1) + O(AL))
f(t , Xk l(tn) Vi l(tn)) + Vf(tn7 Xk,l(tn), Vk)l(tn)).O(At?’)
f(tn+1 X l(tn+1) Vi l(tn+1)) + Vf(t" X}c’l(tn), Vk’l(t")).O(At?’)

= "z, v) + VI, X (), Vi (17)).O(AL3)

and
IFEH) = T o T o T f (") 13.0) < CAL IV F i 0.7:2 (0)-
Moreover we have
V(e w) — (VT 0 VT 0 VT (1)
< ‘(V)?k,l(t")vvvk,z(t")) - (VXk,l(tn)aVVk,l(tn))‘
’Vf (t Xkl(t”) Viea(t )‘ + [(VXga ("), Vi (t7))]

|98 (8 Reat), Valt)) = V£ (87, X "), Via(t)|.
so that we get
|95 = VT3 0 9T 0 VT () 130
h
3 2
< CAt (||Vf||zoc(0,T;Loo(Q)) +|V f“l‘X’(O,T;L‘X’(Q))) ;
which ends the proof. 0

We go on with a proposition which gives information on the L3-stability of the
interpolation operators.

PRrOPOSITION 4.4. Let Hj, and Ly, be the interpolation operators and 1, the
translation operator defined in section 3.1. Then for all functions f € € (0, T; %} (Q)),
we get the estimates
2) ”Tu,OEthLi(Q) < ||f||L}2l(Q) )

3) HT/—L,OthHL;L(Q) < ||f||L§(Q) )

4) HTM,OaéL’thHLi(Q) < ||a£1/’f||Li(Q) ’

5) ||7'0,V£hf”Li(Q) < ||f||L;i(Q) )

6) ||T0,VH}LfHLi(Q) < ||f||L}2l(Q) )

7) ||7-0,U8’L/th”[,i(g) < ||afoLi(Q) .

Proof. We give only the proof for the estimates (4.2)—(4.4), because the proof of

inequalities (4.5)—(4.7) is the same.
Let us start with the estimate (4.2). We have

||Tu,0£hf||L‘i(Q) = ||£hf||L§’7Nhfv0 .

Let w = (ws,w,) be a two-component vector belonging to Z2. z is an abbreviation for
(z,v), and k is an abbreviation for (k.,k,). k. (resp., k,) takes the values 2rw, /L
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(resp., 27w, /(2R)), where w, and w, are integers. If we note that N = (N,, N,)) and
zy, = (zk, ), the Fourier series decomposition of f gives

fig= |1/2 Z f )z,

|w|<N/2
Therefore we get

1+2
Lrfit; = ‘Q|1/2 Z Z Fw) B (i + pj A)e! k@) zed)

|w|<N/2 k=i—1

o 3 Tl
lw|<N/2
where
3 .
ot we) = Y (1 4 pj) Az)ehe@e)or,
k=0

As a consequence we obtain
Nz N,

”Ehf”Lz apo = AzAv Z Z Lif)itps,i (ﬁhf)z-s-um

1=0 j=0

i=0 j=0 || <N/2 |’ |[<N/2
i (k(@) —k(@"),(1,0)) itk (w)—k(w) 75)

Since

i(ko (wa) ke (W},)) s
|L| Ze = 6wz,w;7

we find

2 (o) Fleon ! ) i(ky (wWo)—ky (W) v
I\EhfIIL;l,Ag,oz |Z ST F (@) (@ w0y wg) Pei ek

7=0 |w|<N/2 |w/,| <N, /2

Finally as

i(ky (wy)—ky (w Juj =6
|2R| Z wv,w b

we get

2
1L 172 amo < sup{lo(p,ws)?, |wela| < L/2, 0< < 1)

|Z T Y )T etk

J=0 |w|<N/2|w!|<N,/2

< supf{lo(p, wo) %, |welAz| < L/2, 0< <1} > [f(w)?
|w|<N/2

< sup{lo(p, wa)|?, lwoAx| < L/2, 0 < p < 1} f]7,.
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Without loss of generality we can suppose that L = 27, Ax = h, £ = w,h, and
¢ = p—1/2. Then we have to prove that

sup{lo(¢, &), ¢l <, [¢] <1/2} <1,

with
3/2
o) = Y (O™,
k=—3/2
and
3/2 i
G = 1] Eli_i;,ke{—S/Q,—l/Q,l/2,3/2}.
A

If we set = 1 — cos(§), after some algebra we find

eGP =1~ ((;)—<> ((2)—<) 02

which ends the proof of the estimate (4.2).
Proceeding in the same way, we get

3+29<<;>2—<2>] /9,

HTM,OthHLi(Q) = ||thHL}2L,A;:’O

1/2
<sup{|Q(1, &, W], 0< p <1, [§] <} ( > f(W)Z)

lw|<N/2
<sup{|Q(p,&h)|, 0 < p <1, €] < mHIfllLz,

where

Q1. h) = foluh) + 61 (W) + iS4 (ah) + i1 ()

and
HTu,OathfHLi(Q) = ||8$th||L;"1,A’;’O

1/2
< sup{|Q(u, &, h)], 0 < p <1, [¢] <7} ( > |wx2|f<w>|2>

|w|<N/2
< sup{|Q(p. &, h)], 0 < p < 1, €] < 7|0 fll 2

where

1O, &, 1) - |€] = |Q(u, €, ),
with

(1, &, h) = do(ph) + d1(ph)e™ + i&o (uh) + i€ (nh)e™.
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Therefore we have to prove that

Qup =sup{|Q(p, &, M), 0< <1, [§] <7} <1

and

Ouup = sup{|O(1, &, 1)), 0< p < 1, ¢ <7} < 1.

Let us start by Qgup. First we note that Q can be rewritten as

O, &, h) = Q(u, &) = (1+2p) (1 — p)? + (3 —2p)pPe™ +ip(1 — p)? +i&p (p— 1)e™

If we take the modulus of Q, after some algebra we get

QU ) = 1= (1 — p)? {2(1 — cos €)(3 — 20)(1 + 21) — (4% — 4 +1)
— 28 (1 —cos&u(l — p) — 2&sin&(—4p® +4p+1)}.

If we make the change of variable v = p — 1/2, after some algebra we get

QW eP =1~ ((;) —u2)za<u,e>,

o(v, &) = —v*(4sin(£/2) — 2¢sin(£/2))? 4 8(1 — cos &) — 352(1 —cos&) — 4€sin? €.

where

In order to show that Qg < 1 it is enough to show that o > 0 for all || <, |v| <
1/2. Since o is a polynomial of degree two with respect to the variable v whose term
in 12 is negative, we have to prove that for all £ such that |£| < 7 the roots of o are

real and of modulus greater than or equal to 1/2. The roots of ¢ are

n —8(1 — cos§) + 162(1 — cos &) + 4¢ sin’ &
vr(8) = —2(4sin(€/2) — 26sin(€/2))2
We must prove that |v;,(€)|? > 1, which is equivalent to showing that g(¢) < 0, where
g(&) = —6(1 — cos€&) + €2 + 2¢sin&. In order to prove that g is negative on [, ],
we study the function g. For that we need to derive g three times.

Now, let us show that qup < 1. In order to prove that qup < 1 it is enough to
prove that

Q(u, & W) = 67 <0 Vgl <m 0<p<1.
In fact Q(u, &, h) can be recast as

= 6u( — 1)+ 6p(1 — p)e’® +i€(1 — p)(1 = 3u) + i€u(3p — 2)e™

Taking the modulus of Q, we get

19, &)1* = 72 (1 — p)*(1 — cos €) + 12 sin {u(1 — ) (6 — 6+ 1)
+ &2(1 = 6+ 64%)” + 2(cos € — EX (1 — p)(1 = 3p) (3 — 2).
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If we make the change of variable v = p — 1/2, after some algebra we find
Q) = [¢]* = a(&)v* + b(E)V? + (),
where

5 2
a(é) = [12sin§ — 6£ cos g] , (&) = [(3sin§ — gcos g) —521 )

2
b(§) = [2 (Gsing — 2€ cos g) + &2 (1 + sin? g)]

First we note that |Q(£3,€)[? — |2 = 0. Consequently |Q[> — |£|? can be rewritten

as follows:
2
O O — ¢ = ( -(3) ) (02 + B(6))

Let us show that [ is positive. By following a classical result on the equation of second
degree we get 8(¢) = —4a(§)c(§). It remains to prove that ¢(§) < 0 for all €] < 7.
We have ¢(§) = 11(£)12(§), where

h(§) = 351“% - gcosg =& b(§= BSing - gcosg +&.

In order to prove that 1l is negative on [—m, 7], we study the sign of {1 and lo. For
that we need to compute the derivatives of [; and ls until the order three. Finally we
get

QWO — ¢ <0, v <1/2, |¢f <,

which ends the proof of the proposition. ]
We continue with the following lemma, which gives an estimate of the term (I12).
LEMMA 4.5. Let f € 6, (0, T;62()), and then

|70 070 o T (1) — T 0 TP o 0 p 1)

Li(9)

< CAt (At2 Azt 1 Avt o+ Az + AzAvt + H (710’0 - i‘“’) £t

13(9)
+ Hio’o (F(t") = fh(tn))HLi(Q) A H (7—1170 B 7~—11,0) J) £2(9)
+ a0 g - nen) )
and
|VTi 0 VT o VT (") = VT 0 VT3 0 VT (1) L2(@)
< CAt (At2 +Az% + Az Avt + Aot + Azt + Az H (Tlo’o N %1070) AR PP
h

$8071 |00 () — )|

(720 = 7°) ram)

o |
()

Li(sz)) '

Ly ()

+ 70 e = e
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Proof. We introduce the characteristic curves (X (¢"), V(t")) defined by
~ 1
X", x,v) =x — vAl — §At2E}?+1/2(I — vAt/2),
V(" z,v) =v— AtEZH/z(x — vAt/2).
As has been done in Lemma 4.3 we have
(T P01 r (") = f (1" Realt™), rath))
(VTio VR o VEf(t) =V (Xnalt), Viealt")) VF (" Keat), Vra(t))

As a consequence we can write

(4.8)
(moromtamtyen), - (10T T1°’°f(t"))k7l
< ‘Vf ()N(k,z(t"),f/k,z(t" )‘ (‘sz ") — Xpa(t ‘Vkl (™) — Vi (1) )
and
(4.9)

‘(Vﬂ oV o VT f(t")), — (vj'l oVTyo VTIf(tn))k l’

< ‘Vf ()?k,l(tn),f/k,l(tn )‘ (‘VXM ) — VX (")

)

.‘v2f(Xk,l( )Vkltn)j ‘v(xkl( ),Vk,l(tn))].

‘VV]C 1 tn) VVk l(tn)

)

(‘Xkltn) X (t ‘ ’szt" — Vi (™)

Let us prove a bound for 99X (t") — 0 Xy, (¢")] and [9°Vy 1(") — 9°Viu(t")|. By
using the definition of (X (£"), V(t")) and of (X (¢), V(")) we get
(4.10)

(‘Xk’l(t") — Xpa(t") )

+ ‘Vk’l(t") — Vk,l(t”)

< cAtHE;;“”(x) —E(t”+1/2,x)HL

< CAt(HE(t”“/2,x)fE‘(t"“/Q,x)HL +HE(t”“/Q,x)fEZH/Q(x)HL ).

)

(411) ([0 Rralt") = 0 Xia(t)] + |00 Tha(t) = 0, Via(t")

< CAt (’ ("2 2y — 9, E(t" T2 1)

.-
+ o B2 w) - 0,7 )| )

and

(4.12) (|00 Rrae™) = 0Kkt + [0 Via(t) = 0, Via (07

)

< CAt? (

B, E(t"V/2, x) — 8, E(t"+1/2, x)HL

+ B — 0.5 @) ).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



658 NICOLAS BESSE

where E(t"71/2 z) and 9, E(t""1/2, z) are solutions of the Poisson problems

<jE> ("2 z) = /Tlf(t”,m,v)dv —-1= /f(t",x —vAt/2,v)dv — 1,
~ x " "
@ 0
/ E("Y2 z)de =0
0

and

d (d~
—(—E) )" /710 :/ P 1 — vAL/2
~ (dx (dx )) (t " @, v)dv va f(t", 2z —vAt/2,v)dv
Fld +1/2
—F ) (t" dr = 0.

First we give an estimate for | E(t" /2, )—E(t"1/2 z)|| Lo and for ||0, E(t" /2, z)—
Ou E(t" /2 )| . By using the Vlasov equation we get that

f(tn+1/2,£l,',’l}) - f(tn,m - ’l}At/2,’U)
Al/2

= O f(t" Y2 1, 0) + vd f( T2 2 0) + O(AL)
= —E(t" "2 2)0, f(t" T/, 2,v) + O(At),

and it follows that
(4.13)

HE (1/2) — (tn+1/2)H
LOO

/ " Kew) ( / :o[f(t”“”, v,v) — F(E"y - vAt/Q,vndv) dy

< CA2.

Lo

In the same manner, if we derive the Vlasov equation with respect to the variable x,
we get

n+1/2 _ n — vAt/2
Ou f(t , T, ) A%;g(t ;T — vAL/2,v) — O, B2, 2)0, f (172, 2, 0)

—E(t"2, 2) 0, f ("2, 2, 0) + O(A),

and we find
(4.14)
HaxE(th/?) - amE(thN)H

Lo

/ K(z,y) (/ [0, F (112, ) — @f(t”,y—vAt/Q,v)]dv) dy

Loo
< CAt?.

Now we estimate the terms ||En+1/2( ) — E(t""Y/2 2)|L~ and ||8wEZ+1/2(x)
— 8, E(t""1/2 )|/ L. Until the end of the proof the following notation is used:

HE(th/z) _ EZ+1/2H = max ’E(thrl/Z’xk) _ EZH/Q(%) ’
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E(t77.+1/2) _ E’?+1/2’ — max ’81177@”“/2,%) _ 59;EZ+1/2(IIC) ’

1,00
and
= lloe + 1,00 -

Suppose that x = zp + Az, with 0 < 0 < 1, and then we get

‘E(tnﬂ/z,x) — B ‘ ‘E ("2, ) — do(0AZ)EA"H1/2, )
— 1 (OAD)E(t" T2 24 p) — Yo (0AZ) D, E(t" T2 1) — 1 (0A) D, E(t" /2, 24 41)
‘(;50 0Ax) (E (12 ap.) EZ+1/2(xk)>
+ 61(087) (B2 wp0) = By (wn) )
1o (0Az) (azE(th/?, zy) — O, BN Y 2(:,;,c))
+ 1 (0AT) (awE(th/?, Trpr) — arEg“/Q(ka)) ‘ :
We deduce that

HE(tn+1/2) — E}’LL+1/2HL <C (Ax‘l HEH n HE(thm) _ EZ+1/2H

€(0,T;%44([0,L]))

n+1/2 +1/2
(4.15) + Ax‘ (t+1/2) — g ’m) .
In the same way we show that

Ha E(t"Y?) — 8 EnH/QH <C (A HEH
s bty Lo = €(0,T3%*(0,L]))

(4.16) + Azt HE(thﬂ) _ E2+1/2HOO I ‘Ev(tn+1/2) B E2+1/2‘1 oo) .

Now we estimate the terms || E(t"+1/2) —EZH/QHOO and |E(t"1/2) —EZ+1/2|1,OO. We
proceed as follows:

{8 (E(t"+1/2, xk+1)_E(tn+1/2, xkq)) _ (E(tn+1/27 xk+2)—E(t"+1/27 xkq))}

= 9, B2 2) + O (Az?)

12Ax

= —1+/T10’0f(t”,:ck,v)dv+(9(Aw4)

=—-14+0 (A:E4) +0 (Av4)

Al (mogen), (7o), ea s (),

’ l,odd ’

s (o), )

l,even ’
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If we set §E, = E(t"+1/2, z;,) — E}?H/Z(:Ck)v we get
(4.17)
Toag BBkt = 8Bk-1) = (B2 — 8Ep—2)} = O (Az?) + O (Av?)
Av " ~ N . _ .
Al arrse), - (o), - 1), - (),
0, O 70,0 n
Y [(T ™)., (T h >)kJ
l,0dd
0, O 70,0 n
w2 3 |(700), - (7)), | |
By using the periodicity of § Ex, we obtain
(4.18)
1 &
As ;; 18(8Er1 — 6Ex—1) — (6Eis2 — §Ej—s)|
= 12A:L’ Z |8 |(SE1€+1 - 5Ek 1| - |(5Ek+2 - (SEk 2||
1| &
> 12A7x 8 Z |6Ek+1 - 6Ek—1| - Z |6Ek+2 — 5Ek,2|
k=0 k=0
1 N N N.
= 19Az {82 6Bki1 — 8Ex_1| = Y [6Bkia — 6Ex| — Y |6E; — 6Ek_2|}
k=0 k=0 k=0
Na

1
Az Z |6 Ei1 — 0B _1].
k=0

Y

By using (4.17), (4.18), and the Cauchy—Schwarz inequality we obtain

N,
(4.19) Z|6Ek+1—5Ek 1| < 0 (Az*) + 0 (Av?)
k=0
0,0 n ~0,0 n
reasde Y |(m0rn), - (F0e), |

)

(k,HEM

<o(art)+oat) +o (|(70 - 700) sy

Li(9)>

<0 (Axh) +0 (M) + CVIQ (H (700 =720 st

Li(ﬂ)) '

L}, (9)

+{|T0 ey = g

Ly ()

o RGO EAR)
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We set M as a mean value of 6 F},

Av
M= 3 8Eo+8EN, +4 Y 6E +2 > 6E ¢,
l,odd l,even
and then
mkin SEL < |M|.

By using a discrete version of the Taylor formula with the integral remainder we get

NJ:
max 8By < min §E; + > 16Eki1 — 6Bk
k=0
Na:
(4.20) < M|+ Z |0Ek+1 — 0Ek—1].
k=0

Thanks to the discrete zero-mean electrostatic condition on Fj (see Problem (Pj))
we get

(4.21)
8Eo+6EN, +4 ) 6E +2 ) 6E
l,odd l,even
= B2 m0) + B2 oy, ) +4 > B2 3 +2 Y BTV m)

l,odd l,even

B P (o) + BT P aw,) +4 Y BT ) +2 Y B A ()

l,odd l,even
L ~
- / B2 p)de + O(Az?) = O(Axb),
0

Finally, using (4.21) and (4.20) gives

N
(4.22) 6Bk < O(Az*) + > [6Ek41 — 6Ex_1.
k=0

Thanks to (4.22) and (4.19) we obtain

|Bnvn —mpe| < <Aw4 ot (70T s

Li(sz)) '

B(n+1/2) - E;LH/ZL N <C (Aaz4 + Av* + H (7—11’0 - jv—11’0> ")

Li(ﬂ)) '

Ly ()

(4.23) + |70 e = )|

In the same manner we get

L7(2)

(4.24) + || ey = )
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By putting together the estimates (4.8), (4.10), (4.13), (4.15), and (4.23)—(4.24) we
obtain the first estimate of Lemma 4.5. Therefore by assembling the estimates (4.9)—
(4.16) and (4.23)—(4.24) we get the second estimate of Lemma 4.5. ad

We continue the proof, with the following proposition which states the H'-
stability of the transport operators.

PROPOSITION 4.6. Let f € 6,(0,T,%(Q)), and then there exists a constant C
independent of Ax, Av, and At such that

(4.25) 720 £(t) @) < Hf(t)HLi(Q) ;

(4.26) 107 (1) ra@) < Haxf(t)||L§(Q)7

(4.27) T 5 g <190 Oll 0y + OO0 D)3
(4.28) T0F (1) @) < Hf(t)HLg(Q)v

(4.29) LW 5 gy <1927 Olliz o) + OALIO W3
(4.30) T, f(t) L3(9) < 190 f Ol @ -

Proof. By using (4.3) we get

|7°7]

Li(Q) = ”SvAt/Z,OthHLi(Q) S HfHLi(Q) .

From (4.4) it follows that

|77]

e HSvAt/Q,OathfHLi(Q) < N2 fll 2 (o) -

Thanks to (4.2) we find that

|71

At ||~
) = ISuatrzoLnduof |1z ) + 5 HTf’Of‘
< ||avf“Li(Q) +CAt ||amf||Li(Q) .

Li(@ L)

By using (4.3) we get

|71

ooy = 18025 M0l 3 ) < 1220
h

and from (4.6) it follows that

|71 .., = 180.808, 010 3y < 100l e -

Ly ()

Now let us show that |EZH/2|1,OO is bounded. To do this, we suppose that [|0 4 (t")| 12 ()
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is bounded. Then from Problem (P}) we get that

T2 (r) — O BP Y (2, 1)‘ < 2L+ CAzAwY
k=0 k.l

< L cffos

s

Ly (@)
< L+ V|| T hue)

<C,

3@

and it follows that

EX

- ZH/Q(CCO) +3zE2+1/2($N1)

+ 43 0BT @) +2 Y 0.Er T (w)

l,odd l,even

Z+1/2($k+1) - @cEZH/Q(xkq)’
k=0
<C.

Now let us prove inequality (4.29). By using (4.5) it follows that

|77]

n+1/2H HTO 1

< [|So,atE, L10x f||L2(Q) +
<02 fll 2 0y + CAtHafoL,ZL(Q)’

L2 ()

which ends the proof of the lemma. 0

We continue with the following lemma, which gives an estimate of the precision
of the approximation of the transport operators.

LEMMA 4.7. Let f € 6,(0,T;%;}(Q)), and then there exists a constant C inde-
pendent of Ax, Av, and At such that for |a] <1 we have

(72 = 7) £00)
|(Ze - 75) 1)

4—|a
s = O8T " Whaortion)

4-al
L2(Q) < CAv ||f||<gb(O’T;%f(Q)) )

Proof. 1f f € €?™([a,b]) and 7, f is the Hermite polynomial of degree 2m — 1
which interpolates f and its m — 1 first derivatives at the points a and b, then

i P
m—j . _
Lo ([ab]) (2m—j)|22m [;]h , 0<7<2m—1,

Hf(a) — 7Thf(J)H
where [j] = j if j is even and [j] = j + 1 if j is odd. Then we have
[(ze0 =72 s)]| < ClSunino (16 = H O] e
< O Suaq0 (0~ HF O3,

< CIFE) = Hf Ol 150,y < CAT* 1 f s om0

Ly ()
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(7 = 71°) s

< C||Svat2.0 (02 f(t) — Haf(2) HL"O(Q)
< C||Svatyz0 (0 f(t) — O HLS(E) HLOO(L"O )
<C ||3zf(t)_axth(t)”L;o(L;fv) <CAz® ||f||<gg,(0,T;<€;‘(Q)) )

Ly(Q)

(" =7) g0

< C||Svatyz,0 (Do f(t) — Ludu f(t) ||L°°(Q)

+ CA[[Syatjz0 (0of (1) = i )] o 0
< C[Suarrz0 @uf (©) = £400f D) 1

+ CAL|[Syae/2,0 (02 f (1) — O Hn f(t)

< CI0 IO ~ L300 f ()1 10
+ CAt]|0, f(t) — athf(t)HLi"(Li‘fv)
< C(AtAl‘g + AI4) ||f||<€b(0’T;3§l§1(Q))

L2(9)

ez,

< CAz? 1£lls5, (0,755 ) »

|(720 =720 rio)]

< ClSo,aez, (f(t) = Haf @)l 1 0
< C|ISo,atE, (f(t) — th(t))”L;’fjw(L?)
< OO =Haf )l ge_15e) SCAV I F s, (0,m8300) -

L3 (Q)

< CSo,atE, (02 f(t) — 8$th(t))||LZ°(Q)
< C|[So,ate, (O f(t) — 8thf(t))||L;fw(Ls;o)
< Cll0nf () = OHnf )l e 1) < CAV? [ flleg, (0. 7503000 »

H (,j‘—O 1 TO 1) f(t)‘

L3 ()

H(,?1 0 ,2-1 0) £t )’

P < CSo,atm, (0xf(t) = Ladz fD) L~ o)

Z“/QHOO 1S0,a¢8,, (0o f (1) =Hnf ()| L o)
< ClISo,atm, (02 f () = Lr0e fO) L (1ee)
+ CAt||So,atE, (Ouf(t) — athf(t))HLz‘?w(Li")
< Cogf(t) — ﬁhaxf(t)HLme(L?f’)
+ CAL||0, f(t) — athf(t)HL;’fz(Lgo)
< C(AtAY* + A" ||l (0.5 ()
< CAv? Hf||<gb(o,T;<gg(Q)) S

Now let us evaluate the term (I3):

|70 T o T p(en) ~ o 0 Ty 0 T pe7)

2@’
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LEMMA 4.8. Let f € €,(0,T;%6(?)), and then

H,]—lo,o o ,]A-Qo,o o Tlo’of(t”) _ ,]-10,0 o %20,0 o 7~'10’0f(t”)

L2(Q)

<C (Ax4 + Avt + At (At2 + Azt + Avt + Ax® + AzAv?

+ | (70 =72°) ey

+ |70 () = )|

L3(©) L3(©)

w2 -7) s

2| T () - fule)

o))

L2 (Q
and

HV’Tl o V@ o VT f(t") — Vﬁ o V%Q S Vﬁf(t")

L2 (2)

< C(Am3 + Avd + At (At2 + A3 + Az TAvt + Avt + Azt

(14 Aa) (700 = 70°) s

L7()

+ (L4 27 | T (F) = fut)|

L2(9)

-7 e

7 ey = )

Lim)))

L2 (2

Proof. First we consider the following decomposition:

To 0T o TOf(t7) — T 0 T2 0 T2 f(1" <||(7e = o) 0 T 0 To p1m
|7 o T o sen - T o T o T fen)| o < [[(T0 - T ) o T o TS,
(4.31)
+ |7 (T - T) o T ) o)
(4.32)
FeoTro (To —70) flt .
+ 1020(1 1)f()Lﬁ(Q)
(4.33)

Let us start with the term (4.31). The term (4.31) can be decomposed in the following
manner:

T —T) o T o T F(1™ < W7 = T2) o T2 o T f(1™
H(l 1>O201f()Li(Q)_(1 1)0201f()Li(Q)
(4.34)
e (T -m) omesen o
(4.35)
T (T — T o TOf (1" .
+ 10(2 Q)Olf()L,%(Q)
(4.36)
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Let us proceed with (4.34):

H (Tla - ia) o Ty o T f(1") < CAztlel

Ly (9)

T, o TV f (1)

(@)
ex) At

<C (”f”%b(O,T;‘é"f(Q)) I1E
< CAz*lol,

The term (4.35) has already been estimated, and the result is given by Lemma 4.5.
Let us evaluate the term (4.36). If we introduce the characteristic curves

At?
=T — 'UAt =+ 7E(tn+1/2,x),

N At?
X* tn = —’l}At—i—TE +1/2( )

)

(t")

V(") = v — AtE(t" Y2 ),
(t")
(t") = v — AtE T (@),

L] R, ) = (07, K ), Va0

<eat| B2 = BE )| 19l

We deduce that
H (@0,0 _ 7—20,0> o Tlo’of(t")

)

< C|Q|At HEZH/Q - E(t"+1/2)H

L2 () oo

and by using (4.25) we finally get
70,0 (50,0 0 0,0 £(4n
[700 0 (0 =) e 12057, o

< clojat||Bp 2 - B/
< CAt (At2 + Azt + Av?
-z

+ |70 ray = )|

Ly ()

Li(ﬂ))'

On the other hand we have

‘( V7 — w;) o VT f( t"))

k,l

) = V(")

’V (Xkl(tn) Vkl(tn)>‘

’VVM ") = VVk,l(t”)

< ’Vf (XI:,Z ("), Vg (t™) )‘ (’VXM (t") = VX (¢
‘Vf (Xzz,z (t") Vkl ) Vf (sz t"), Vkl )
‘Vf (X,” (), Vi () )‘ (‘VX* (") — VXF, ("

)

|92 (Ria), Vi) |- |V (K, Vi) |

)
)

IN

(‘Xkl ) = X7, (")

'Vkl Vk,l(tn)
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V2 f

0155 102 F ||<€b<o,T;<gb<m>)

)

< (IVFllgy 0,760
(R0 T

| Py = Vo)

+ VR (") - VR ()

+ V) = V()

< onts - e

1,00

From inequalities (4.26), (4.27), (4.29), and (4.30) we find that

[v% (V2 - va) o vri 07

< (1+0A) |(VE - VE) o VT f(t")

Ly

< C|Q|At HE,’j“/2 - E(t"Jrl/Q)H1
,00

(2 L7 ()

< CAt (At2 + Azt + Avt + H (Tlo’o - ﬁovo) F(t)

L2(Q)

|00 (e = )|

P (G E

Li(Q)) ’

Let us continue with the term (4.32). By using (4.25) we get that

L?(Q)

+|| 70 () = )

Hjﬁlo,o o <7A-20,0 _ @0,0) o ’Tlo’of(t")

< H (7620,0 _ @o,o) o ’Tlo’of(t")

Ly () L2(9)

< CAv HT}O F(t™)

%, (2)

< CcAv? Hf”%((),T;?ggl(Q)) .
By using (4.26) and (4.27) we have

Hvﬁ o(VE - VE)o VT f(t")

<(+can (VR - VE) o VIt

L2 (Q) L2 ()

< cact|| 70

G ()
< CAv® IIf

€(0,T;64(Q)) *
Let us finish with the term (4.33). By using (4.25) and (4.28) we get that

H,’]V—lo,o o ,2~—20,0 o (Tlo,o _ ,2~—10,0> F(t™)

o < H@o,o o (7—10,0 _ ,2~—10,0) F(t")

L? L?(Q)

< ||[(z0 - 7°) £y

< cast |70 f(er)

L3(Q)

6 (Q)

4
< OAz | flleg 0,18 () -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



668 NICOLAS BESSE
By using (4.26), (4.27), (4.29), and (4.30) we get that

|V7i o VT o (VT - VT £t)

< (1+ CAt) HWNE o (VT1 - Vﬁ)f(t”)

L7 (@) L7.()

< (14 CAt)? H (VTl - Vﬁ) f")

L3 ()
< CAz® 1)l

< CAZ | flgorwpiey)- O

Now let us evaluate the term (14).
LEMMA 4.9. Let f € 6,(0,T;%}(2)), and then there exists a constant C inde-
pendent of Ax, Av, and At such that

|70 e T 70O (t) - st

sy < W) = 5l o

and

[VTi o VT o VA1) — fut)|, ) < (4 CAD VI = VI oz oy -

L7 ()
Proof. By using (4.25) and (4.28) we get that

H,flo,o 0 TO0 o FOO(f(4m) — fh(tn))‘

<[220 0 Z0(st7) - Fute))

L3 () L3 (Q)

< |70 - )
S AFE") = a2 @) -

By using (4.26), (4.27), (4.29), and (4.30) it follows that

L7 ()

Hvﬁ o VT 0 VTI(f(t") — fu(t"))

L3 (Q)

< (1+CAY) Hv% o VTi(f(t") — fu(t™))

L3 ()

< (14 CAL? Hvﬁ(f(t") — (™))

L2 (2)
< (L+CAL? V(") = V(™) 2 @)
SA+CAY V") = VIt )z ). D

Proof of Theorem 4.1. By putting together Lemmas 4.3, 4.5, 4.7, 4.8, and 4.9 we
obtain

( ”en-i-l”LfL(Q) ) B ( 1+ CAt AtAzx > ( ||en||LfL(Q) )+< Y )
IVentalis o) At(1+Az7")  1+0A )\ [[Vealz o) o)
where

v =C (A + (1 + At + Az)(Az* + Av?) + Az* + Az?)

and

Oy =C (A + Az~ (1 + At + Az)(Az* + Av') + Az® + Az®).
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The eigenvalues of the matrix

1+ CAt AtAzx
At(1+Az7Y) 1+ CAt

are equivalent to 1 + O(At). The formula of recurrence gives

||€n+1\\L§(Q) 1 Y CT H%HL%(Q)

Ventillz o) IVeollLz )

which is the error estimate of 9 f—0° f;, stated in Theorem 4.1, assuming [|eo|| 12 () =
[VeollLz (@) = 0. By using the estimates (4.23) and (4.24) and thanks to the error
estimate of 0 f —0% f3,, we find the estimate 0% E —0“E}, stated in Theorem 4.1. 0
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