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Département Physique de la Matière et des Matériaux,

UMR Nancy-Université CNRS 7198,
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In this paper we consider the relativistic waterbag continuum which is a useful PDE
for collisionless kinetic plasma modeling recently developed in Ref. 11. The waterbag
representation of the statistical distribution function of particles can be viewed as a
special class of exact weak solution of the Vlasov equation, allowing to reduce this lat-
ter into a set of hydrodynamic equations (with the complexity of a multi-fluid model)
while keeping its kinetic features (Landau damping and nonlinear resonant wave-particle
interaction). These models are very promising because they are very useful for analytical
theory and numerical simulations of laser-plasma and gyrokinetic physics.10–16, 56, 57 The
relativistic waterbag continuum is derived from two phase-space variable reductions of
the relativistic Vlasov–Maxwell equations through the existence of two underlying exact
invariants, one coming from physics properties of the dynamics is the canonical trans-
verse momentum, and the second, named the “water-bag” and coming from geometric
property of the phase-space is just the direct consequence of the Liouville Theorem. In
this paper we prove the existence and uniqueness of global weak entropy solutions of the
relativistic waterbag continuum. Existence is based on vanishing viscosity method and
bounded variations (BV) estimates to get compactness while proof of uniqueness relies
on kinetic formulation of the relativistic waterbag continuum and the associated kinetic
entropy defect measure.
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1. Introduction

Vlasov equation is a difficult one mainly because of its high dimensionality. For
each particle species, the distribution function f(t, r,v) is defined in a 6D phase-
space. Even the simplest (one spatial dimension, one velocity dimension) implies
a 2D phase-space. Can it be reduced to the sole configuration space as in usual
hydrodynamics? In that last case the presence of collisions with frequency much
greater than the inverse of all characteristic times implies the existence of a local
thermodynamic equilibrium characterized by a density n(t, r), an average velocity
u(t, r) and a temperature T (t, r). A priori in a plasma the distribution function
f(t, r,v) is an arbitrary function of r and v (and t of course) and phase-space is
unavoidable.

An alternative approach is based on a waterbag representation of the distribu-
tion function which is not an approximation but rather a special class of initial
conditions. Introduced initially by DePackh,26 Hohl, Feix and Bertrand8, 9, 32, 33 the
waterbag model was shown to bring the bridge between fluid and kinetic descrip-
tion of a collisionless plasma, allowing to keep the kinetic aspect of the problem
(such as Landau damping and nonlinear resonant wave-particle interaction) with
the same complexity as a multi-fluid model. Twenty years later, mathematicians
have rediscovered this property using the kinetic formulation of scalar conservation
laws. It was established in Refs. 19, 20 and 36 that scalar conservation laws can be
lifted as linear hyperbolic equations by introducing an extra variable ξ ∈ R which
can be interpreted as a scalar momentum or velocity variable. In Ref. 20 the author
proposed a numerical scheme, known as the transport-collapse method to solve
this linear kinetic equation and has proved, using BV estimates and Kruzhkov
type analysis, that this numerical solution converges to the entropy solution of
scalar conservation laws. This result was also shown in Ref. 64 using averaging
lemmas17, 29, 39, 40 without bounded variation estimates. Soon after, it was shown in
Refs. 61, 54 and 59 that, without any approximations, entropy solutions of scalar
conservation laws could be directly formulated in kinetic style, known as kinetic
formulation. Its generalization to systems of conservation laws seems impossible
except for very peculiar systems5–7, 21, 55, 65 where among others, the kinetic formu-
lation of multibranch entropy solutions has been developed. One of those systems
is the isentropic gas dynamics system with γ = 3 for which, long time ago, the
link with the Vlasov kinetic equation was pointed out in Ref. 8 as the so-called
waterbag model. Let us notice that the multibranch entropy solutions have been
used for multivalued geometric optics computations and multiphase computations
of the semiclassical limit of the Schrödinger equation.41–43, 46

This paper deals with the electromagnetic relativistic waterbag continuum which
arises from the reduction of four-dimensional relativistic Vlasov–Maxwell equations.
Usefulness and efficiency of this model have been recently shown in the context
of laser-plasma interaction11 where it has been used to recover Landau damping
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effect,51, 58 Van Kampen modes propagation,23, 63 nonlinear Bohm–Gross frequency
shift of plasma waves9, 27 and treat stimulated Raman scattering instability at the
saturation regime.14, 30, 31, 34, 44 Moreover, this model reveals to be very useful and
powerful to explain the formation of stable coherent low-frequency nonlinear struc-
tures such as KEEN (kinetic electron electrostatic nonlinear) and EAW (electron
acoustic-like) waves which appear in laser-plasma interaction at nonlinear stage
and persist in the long time dynamics. These modes which have been observed
in several simulations1, 2, 14, 35 can be viewed as a non-steady variant of the well-
known Bernstein–Greene–Kruskal4 (BGK) modes that describe invariant traveling
electrostatic waves in plasmas.45, 49, 50 The ability of the waterbag model to supply
a scenario for the formation of coherent low-frequency structures is very promis-
ing and advanced research on this topic is under consideration. Let us notice that
the application of the waterbag model in magnetic controlled fusion, where plasma
gyrokinetic turbulence governs the energy confinement time, has provided satisfying
and hopeful results.10–13, 15, 16, 56, 57

The paper is organized as follows. Section 2 deals with the derivation of the rel-
ativistic waterbag continuum from a four-dimensional relativistic Vlasov–Maxwell
system. Section 3 is devoted to the proof of the existence and uniqueness of global
weak solutions of the relativistic waterbag continuum. Existence is based on the van-
ishing viscosity method which leads to the existence of strong solution sequences
of a regularized problem. Therefore, a priori bounded variation (BV) estimates are
recovered to obtain compactness of the solution sequences and pass to the limit in
the weak (in the distributional sense) formulation of the problem. Uniqueness of
weak solutions relies on kinetic formulation of the relativistic waterbag continuum
and the associated kinetic entropy defect measure which are equivalent to the weak
entropy solution notion. Finally, the kinetic formulation allows to make the link
between the weak entropy solution of the relativistic waterbag continuum, and a
special class of weak solutions of the relativistic Vlasov–Maxwell equations with
kinetic entropy defect measure.

2. The Relativistic Waterbag Continuum

Since we want to describe the behavior of an electromagnetic wave propagation in
a relativistic gas with a fixed neutralizing ion background, we need to solve the
relativistic Vlasov–Maxwell equations. Even for a plasma plane wave propagating,
let us say along the x-direction, we have to solve a Vlasov equation for a four-
dimensional distribution function F = F (t, x, px,p⊥) with p⊥ = (py, pz):

∂tF +
px

mγ
∂xF + q

(
E +

p× B
mγ

)
· ∇pF = 0, (2.1)

where m is the mass of the particles and q = Ze is the signed electrical charge
with Z the number of charge and e the signed elementary electrical charge. The
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Lorentz factor γ reads γ2 = 1+ |p|2/(m2c2) where | · | denotes the Euclidean norm.
Furthermore, it is easy to reduce the four-dimensional relativistic Vlasov–Maxwell
equations (2.1) into two-dimensional Vlasov equation in the following way. Let
us consider the Hamiltonian of a particle in the electromagnetic field (E,B), in
the relativistic regime, for a one-dimensional system (x) (i.e. for the plane wave
propagation), H = mc2(

√
1 + |Pc − qA|2/(m2c2) − 1) + qφ (rest mass energy,

mc2, has been dropped has it remains constant and plays no role here), where
φ = φ(t, x) is the electrostatic potential, A = A(t, x) is the vector potential and
Pc is the canonical momentum connected to the particle momentum p by Pc =
p + qA. Choosing the Coulomb gauge (∇ · A = 0) implies that A = A⊥(t, x).
If we write Hamiltonian equation dPc

dt = −∇qH , where q = (x, y, z), then along
the longitudinal x-direction of propagation of the electromagnetic wave we have
dPcx

dt = −∂xH , and for the transverse (y, z)-direction dPc⊥
dt = −∇q⊥H = 0. The

last equation means Pc⊥ = constant = Pc⊥ and Pc⊥ is no more an independent
variable but a parameter or a label. Therefore we can consider solution for the
Vlasov equation (2.1) of the form

F (t, x, px,p⊥) =
∫

R2
f(t, x, px,Pc⊥)δ(p⊥ − P⊥(t, x,Pc⊥))dν(Pc⊥),

where P⊥(t, x,Pc⊥) = Pc⊥ − qA⊥, and ν(dPc⊥) denotes an absolutely con-
tinuous measure with respect to the Lebesgue measure. The Hamiltonian of one
particle of transverse canonical momentum invariant Pc⊥ is given by Hr =
Hr(t, x, px,Pc⊥) = mc2(γr(t, x, px,Pc⊥) − 1) + qφ, where γr(t, x, px,Pc⊥)2 =
1 + (p2

x + |P⊥(t, x,Pc⊥)|2)/(m2c2). Each set of particles of transverse canonical
momentum invariant Pc⊥, is described by a distribution function f(t, x, px,Pc⊥)
which obeys the Vlasov equation: ∂tf + [Hr, f ] = 0, for all Pc⊥ ∈ R2, where
[ϕ, ψ] = ∂pxφ∂xψ − ∂xϕ∂pxψ. Therefore the two-dimensional Vlasov equation
reads

∂tf +
px

mγr
∂xf +

(
qEx − 1

2mγr
∂x|Pc⊥|2

)
∂pxf = 0, ∀Pc⊥ ∈ R

2. (2.2)

If we now consider two Lagrangian foliations to be the families of sheets
p±(t, x, a,Pc⊥), labeled by the Lagrangian label a ∈ [0, 1], where the waterbag
continuum p±(t, x, a,Pc⊥) are smooth functions, we define the distribution func-
tion f(t, x, px,Pc⊥) such that

f(t, x, px,Pc⊥) =
∫ 1

0

dµ(a)(H(p+(t, x, a,Pc⊥) − px) − H(p−(t, x, a,Pc⊥) − px)),

(2.3)

where µ(da) denotes an absolutely continuous positive measure with respect to the
Lebesgue measure and H is the Heaviside function. Therefore the waterbag distri-
bution function (2.3) is a solution of the Vlasov equation (2.2), in the distributional
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sense if and only if

∂tp
± +

p±

mγ±r
∂xp

± −
(
qEx − 1

2mγ±r
∂x|Pc⊥|2

)
= 0, Pc⊥ ∈ R

2, a ∈ [0, 1],

(2.4)

where γ±r = γr(t, x, p±,Pc⊥). The last Eq. (2.4) can be rewritten in the conservative
form

∂tp
± + ∂xH± = 0, Pc⊥ ∈ R

2, a ∈ [0, 1], (2.5)

where H± = H(t, x, p±,Pc⊥) = mc2(γ±r − 1)+ qφ. The canonical transverse
momentum Pc⊥ is an exact physical invariant while the bag (p+ − p−)da is an
exact geometric invariant, which is reminiscent to the geometric Liouville invariant.

We now add the Maxwell equations which couple the waterbag continuum p±,
through the scalar potential φ and the vector potential A⊥. The one-dimensional
wave-propagation model allows one to separate the electric field into two parts,
namely E = Exex + E⊥ = −∇φ − ∂tA, where Ex = −∂xφ is a pure elec-
trostatic field which obeys Poisson equation, and E⊥ = −∂tA⊥ is a pure elec-
tromagnetic field. In the absence of any external magnetic field, B is purely
perpendicular and is given by B⊥ = ∇ × A⊥. The other two Maxwell equa-
tions ∂tB + ∇ × E = 0 and ∇ · B = 0 are automatically satisfied. The
two others couple the waterbag continuum p±. The Maxwell–Gauss equation
becomes

−∂2
xφ =

q

ε0
(ρ− n0), Ex = −∂xφ, (2.6)

where

ρ =
∫

R3
F (t, x, px,p⊥)dp⊥dpx =

∫
R3
f(t, x, px,Pc⊥)dpxdν(Pc⊥),

=
∫ 1

0

dµ(a)
∫

R2
dν(Pc⊥)

∫ p+

p−
dpx,

=
∫ 1

0

dµ(a)
∫

R2
dν(Pc⊥){p+(t, x, a,Pc⊥) − p−(t, x, a,Pc⊥)}.

Let us notice that we can equivalently replace the Poisson equation by the longitu-
dinal x-component of the Maxwell–Ampère equation to compute the longitudinal
electric field Ex

∂tEx = − 1
ε0
Jx, (2.7)
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where

Jx =
q

m

∫
R3

px

γ
F (t, x, px,p⊥)dp⊥dpx,

=
q

m

∫
R3

px

γr(px,P⊥(t, x,Pc⊥))
f(t, x, px,Pc⊥)dpxdν(Pc⊥),

=
q

m

∫ 1

0

dµ(a)
∫

R2
dν(Pc⊥)

∫ p+

p−

px

γr(px,P⊥(t, x,Pc⊥))
dpx,

=
q

m

∫ 1

0

dµ(a)
∫

R2
dν(Pc⊥){H(t, x, p+(t, x, a,Pc⊥),Pc⊥)

−H(t, x, p−(t, x, a,Pc⊥),Pc⊥)}.

The Maxwell–Ampère equation ∇ × B⊥ = µ0(J⊥ + ε0∂tE⊥) and the Maxwell–
Faraday equation ∂tB⊥ + ∇ × E⊥ = 0 can be combined to get the waves
equation

∂2
t A⊥ − c2∂2

xA⊥ = µ0J⊥, (2.8)

where

J⊥ =
q

m

∫
R3

p⊥
γ
F (t, x, px,p⊥)dp⊥dpx,

=
q

m

∫
R3

P⊥(t, x,Pc⊥)
γr(px,P⊥(t, x,Pc⊥))

f(t, x, px,Pc⊥)dpxdν(Pc⊥),

=
q

m

∫
R2
dν(Pc⊥)P⊥(t, x,Pc⊥)

∫ 1

0

dµ(a)
∫ p+(t,x,a,Pc⊥)

p−(t,x,a,Pc⊥)

dpx

γr(px,P⊥(t, x,Pc⊥))
.

If we now consider the canonical transverse momemtum measure ν(dPc⊥) =∑M
j=1 δ(Pc⊥ − Pc⊥,j)dPc⊥, then it means that the plasma is initially well

prepared so that particles are divided in M bunches of particles, each bunch
j having the same initial perpendicular canonical momentum Pc⊥,j . Choosing
µ(da) =

∑N
i=1 δ(a − ai)da, means that the waterbag continuum is in fact a mul-

tiple waterbag.11 In the sequel, without loss of generality from the analysis point
of view, we choose ν(dPc⊥) = δ(Pc⊥)dPc⊥, which means that we consider a cold
plasma with no streaming effect in the transverse direction. Moreover, without loss
of generality we assume that the measure µ(da) is absolutely continuous with uni-
form density equal to one, i.e. dµ(a) = da where da denotes the Lebesgue measure.
Moreover, as it is commonly done in plasma physics, we assume that the posi-
tion space is the one-dimensional torus of sidelength L, namely TL = R/(LZ). We
also assume that p ∈ R and a ∈ [0, 1]. We note D = TL × [0, 1], Q = [0, T ] × D,
Ω = [0, T ]×TL, D = TL×R, Q = [0, T ]×D and Σ = [0, T ]×D×R. Since the problem
is posed on the one-dimensional torus in space, the Maxwell–Ampère equation (2.7)
should be modified by adding on the right-hand side of Eq. (2.7) the current average
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over one period L. To complete the system, we need to add the initial conditions
p±(t = 0, x, a) = p±0 (x, a), A⊥(t = 0, x) = A0

⊥(x) and ∂tA⊥(t = 0, x) = A1
⊥(x).

After classical normalization, the dimensionless relativistic waterbag continuum
p± = p±(t, x, a) and the electromagnetic field (φ,A⊥) satisfy the readily obtained
relativistic waterbag equations (RWB)

∂tp
± + ∂xH(t, x, p±) = 0, (2.9)

∂2
t A⊥ − ∂2

xA⊥ = −A⊥ργ , (2.10)

Ex = −∂xφ, −∂2
xφ = ρ− 1, (2.11)

∂tEx = −Jx +
1
L

∫
TL

Jx(t, x)dx, (2.12)

where

H(t, x, p) = γ(t, x, p) − 1 + φ(t, x)

=
√

1 + p2 + |A⊥(t, x)|2 + φ(t, x) − 1, (2.13)

ργ(t, x) =
∫ 1

0

da

∫ p+(t,x,a)

p−(t,x,a)

dp

γ(t, x, p)
, (2.14)

ρ(t, x) =
∫ 1

0

da(p+(t, x, a) − p−(t, x, a)), (2.15)

Jx(t, x) =
∫ 1

0

da

∫ p+(t,x,a)

p−(t,x,a)

pdp

γ(t, x, p)

=
∫ 1

0

da{H(t, x, p+(t, x, a)) −H(t, x, p−(t, x, a))}, (2.16)

with the initial conditions p±(t = 0, ·, ·) = p±0 (·, ·), A⊥(t = 0, ·) = A0
⊥(·), and

∂tA⊥(t = 0, ·) = A1
⊥(·).

3. Existence and Uniqueness of Global Weak Solutions

In this section we will show existence and uniqueness of global weak solutions
of the relativistic waterbag continuum (2.9)–(2.12). To achieve this aim, we first
show the global existence of strong solutions of a regularized problem. Afterwards,
we establish a priori bounded variation estimates on the solution sequences which
allow to pass weakly to the limit in the regularized problem to obtain weak solutions
of the system (2.9)–(2.12). Therefore we can state some remarkable properties of
the obtained solutions such as the preservation of the order. These properties give
a supplementary information on the structure of the solution, especially on the
monotonicity of the waterbag continuum with respect to the a-variable. Finally
we use kinetic formulation of the system (2.9)–(2.12), which is equivalent to the
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weak entropy solutions notion, in order to establish a L1-stability property of the
solutions with respect to their initial data and show uniqueness of the global weak
solutions. We complete the study by showing the link between the weak entropy
solutions of the relativistic waterbag continuum that we have obtained and special
class of weak solutions of the relativistic Vlasov–Maxwell equations with kinetic
entropy defect measure.

3.1. Global existence for a regularized problem

We first introduce a regularization of the system (2.9)–(2.12) by substituting to
Eq. (2.9) its viscous regularization

∂tp
± + ∂xH(t, x, p±) = ε∂2

xp
±, (3.1)

where the parameter ε > 0 stands for a viscosity. Before going further, let us define
some functional spaces. Let us first define the vector-valued Lebesgue space L2 such
as L2 = L2 × L2. We next introduce the Hilbert space

V = {ϕ ∈ L2(D) | ∂xϕ ∈ L2(D)} = L2([0, 1];H1(TL)), (3.2)

equipped with the scalar product

〈ϕ, ψ〉V =
∫ 1

0

〈ϕ, ψ〉H1(TL)da =
1∑

α=0

∫ 1

0

〈∂α
xϕ, ∂

α
xψ〉L2(TL)da,

and the norm ‖ϕ‖V =
√
〈ϕ,ϕ〉V . The dual space of V is the Banach space V ′

defined by52

V ′ = L2([0, 1];H−1(TL)). (3.3)

Let us note that V ⊂ L2(D) ⊂ V ′ and that V is dense in L2(D). Therefore we can
introduce the space W(0, T ) defined as

W(0, T ) = {ϕ ∈ L2(0, T ;V ); ∂tϕ ∈ L2(0, T ;V ′)}. (3.4)

Using the definition (3.4) of the space W(0, T ), we have the following theorem.

Theorem 3.1. (Global strong solutions) Let us assume that p±0 ∈ L2(D), A0
⊥ ∈

L2(TL) and A1
⊥ ∈ L2(TL), then the system (3.1) and (2.10)–(2.12) has a unique

global strong solution{
p± ∈ C (0, T ;L2(D)) ∩W(0, T ),

φ ∈ C (0, T ;L2(TL)) and A⊥ ∈ C (0, T ; L2(TL)).
(3.5)

The proof of Theorem 3.1 relies on a change of unknowns related to the waterbag
continuum, classical results concerning linear parabolic equations,52 the Banach
fixed point theorem, energy estimates and Gronwall lemma. Even if the proof
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of Theorem 3.1 is rather classical, for the sake of completeness, it is outlined
in Appendix A. We next establish a global strong existence result when p±0 ∈
L2 ∩ L∞(D).

Theorem 3.2. (Global strong solutions) Let us assume that p±0 ∈ L2 ∩ L∞(D),
and A0

⊥, A0 ′
⊥ , A1

⊥ ∈ L2 ∩ L∞(TL), then the system (3.1) and (2.10)–(2.12) has a
unique global strong solution

p± ∈ C (0, T ;L2(D)) ∩W(0, T ) ∩ L∞(Q),

φ ∈ C (0, T ;L2(TL)) ∩W 1,∞(Ω) and A⊥ ∈ C (0, T ; L2(TL)) ∩ W
1,∞(Ω).

Moreover, we have

‖p±(t)‖L∞(D) ≤ ‖p±0 ‖L∞(D) +
∫ t

0

dτ{‖∂xφ(τ)‖L∞(TL) + ‖∂xA⊥(τ)‖L∞(TL)}.

(3.6)

In Theorem 3.2 the prime notation in the expression A0 ′
⊥ stands for the partial

derivative with respect to the x-variable. The proof of Theorem 3.2 relies on the
truncation method of Stampacchia,22, 38 energy estimates and Gronwall lemma.
Although quite classical, the proof of Theorem 3.2 is outlined in Appendix B for
the sake of completeness.

3.2. A priori bounded variation estimates

In order to pass to the limit as the viscosity ε tends to zero in the weak formulation
(in sense of distribution or in D ′) of the regularized problem we need to obtain a
priori bounded variation estimates independent of the parameter ε which will lead
to the compactness property of the solution sequences. We establish the following
theorem

Theorem 3.3. (BV estimates) Let us assume that p±0 ∈ L2 ∩ L∞ ∩ BV(D), and
A0

⊥, A
0 ′
⊥ , A

1
⊥ ∈ L2 ∩ L∞ ∩ BV(TL), then the system (3.1) and (2.10)–(2.12) has a

unique global strong solution

p± ∈ C (0, T ;L2(D)) ∩W(0, T ) ∩ L∞(Q) ∩ L∞(0, T ; BV(D)),

φ ∈ C (0, T ;L2(TL)) ∩W 1,∞(Ω) and A⊥ ∈ C (0, T ; L2(TL)) ∩ W
1,∞(Ω).

Moreover, there exists a constant CBV independent of ε, but which may depend on
‖p±0 ‖BV(D), ‖p±‖L∞(Q), ‖∂xA⊥‖L∞(Ω), ‖A0

⊥‖BV(TL), ‖A0 ′
⊥ ‖BV(TL), and ‖A1

⊥‖BV(TL)

such that

‖p±‖L∞(0,T ;BV(D)) ≤ CBV.

Proof. Let ζh ∈ C∞
0 (R) be a convex regularization of the modulus function

which converges uniformly to | · | as h → 0 and satisfies |ζ′h| ≤ 1. Let (p±i , φi :=
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φ[pi],A⊥, i := A⊥[pi]), with i = 1, 2, be two solutions of the system (3.1) and
(2.10)–(2.12) with initial conditions (p±0 i,A

0
⊥, i,A

1
⊥, i) for i = 1, 2. The notation

φ[p] (respectively, A⊥[p]) with p = (p−, p+), means that the electrical potential φ
(respectively, vector potential A⊥) depends on p through the source term of the
Poisson (respectively, Ampère) equation. In other words, this notation is used to
stress the fact that the electrical potential φ (respectively, vector potential A⊥) has
to be seen as an integral operator acting on p or a map from p ∈ L∞(0, T ; L2(D))
into L∞(0, T ;L2(D)) (respectively, L∞(0, T ; L2(D))). We then set p± = p±1 − p±2 ,
φ = φ1 − φ2 and A⊥ = A⊥, 1 − A⊥, 2. If we multiply Eq. (3.1) by ζ′h(p±), after
integration we obtain

d

dt

∫ 1

0

da

∫
TL

dx ζh(p±) +
∫ 1

0

da

∫
TL

dx ζ′h(p±)(∂xγ
±(p1) − ∂xγ

±(p2))

= −
∫ 1

0

da

∫
TL

dx ζ′h(p±)∂xφ[p] − ε

∫ 1

0

da

∫
TL

dx ζ′′h (p±)|∂xp
±|2. (3.7)

Since the ζh is convex, the second term of the right-hand side of (3.7) is nonpositive.
Since the operator ∂xφ[·] :L1(TL) → L1(TL) is bounded in L1 and |ζ′h| ≤ 1, we have∣∣∣∣∣

∫ 1

0

da

∫
TL

dx ζ′h(p±)∂xφ[p]

∣∣∣∣∣
≤ ‖K‖L1(TL)×L∞(TL)(‖p−1 − p−2 ‖L1(D) + ‖p+

1 − p+
2 ‖L1(D)), (3.8)

where K(x, y) = −∂xG(x, y) and G ∈ W 1,∞(T2
L) is the Green function of the one-

dimensional Laplace operator with periodic boundary conditions. Using integrations
by parts, and the identity

ζ′′h(p±)p±∂xp
± = ∂x

∫ p±

0

ζ′′h (s)sds,

we obtain∫ 1

0

da

∫
TL

dx ζ′h(p±)(∂xγ
±(p1) − ∂xγ

±(p2))

=
∫ 1

0

da

∫
TL

dx ∂x

(
γ±(p1) − γ±(p2)

p±

)∫ p±

0

ζ′′h (s)sds

=
∫ 1

0

da

∫
TL

dx ∂x

(
p±1 + p±2

γ±(p1) + γ±(p2)

)∫ p±

0

ζ′′h (s)sds

+
∫ 1

0

da

∫
TL

dx ∂x

(
|A⊥, 1|2 − |A⊥, 2|2

p±(γ±(p1) + γ±(p2))

)∫ p±

0

ζ′′h(s)sds. (3.9)
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Let us first estimate the first term of the right-hand side of (3.9). After expanding
the x-derivative and using obvious estimates we obtain∫ 1

0

da

∫
TL

dx ∂x

(
p±1 + p±2

γ±(p1) + γ±(p2)

)∫ p±

0

ζ′′h (s)sds

≤
∫ 1

0

da

∫
TL

dx {2|∂xp
±
1 | + 2|∂xp

±
2 | + |∂xA⊥, 1| + |∂xA⊥, 2|}

∫ p±

0

ζ′′h (s)sds

≤ ε(h)(‖p±1 ‖BV(D) + ‖p±2 ‖BV(D) + ‖∂xA⊥, 1‖L1(TL) + ‖∂xA⊥, 2‖L1(TL)),

(3.10)

where

ε(h) = C sup
p∈R

∣∣∣∣∫ p

0

ζ′′h (s)sds
∣∣∣∣ h→0−−−→ 0 uniformly.

In Eq. (3.10), we have used the fact that, for i = 1, 2, ‖∂xp
±
i ‖L1(D) =

‖p±i ‖L1(0,1;BV(TL)) ≤ ‖p±i ‖BV(D), since for a.e. t ∈ [0, T ], p±i (t) ∈ V (see defini-
tion (3.2)). For the second term of the right-hand side of (3.9), after integrating by
parts, expanding the x-derivative, using obvious estimates and |ζ′h| ≤ 1 we obtain∫ 1

0

da

∫
TL

dx ∂x

(
|A⊥, 1|2 − |A⊥, 2|2

p±(γ±(p1) + γ±(p2))

)∫ p±

0

ζ′′h (s)sds

=
∫ 1

0

da

∫
TL

dx ∂x

(
|A⊥, 1|2 − |A⊥, 2|2
γ±(p1) + γ±(p2)

)
ζ′h(p±)ds

≤ 3 (‖∂xA⊥, 1‖L∞(TL) + ‖∂xA⊥, 2‖L∞(TL))‖A⊥, 1 − A⊥, 2‖L1(TL)

+ 2‖∂xA⊥, 1 − ∂xA⊥, 2‖L1(TL)

+ ‖A⊥, 1 − A⊥, 2‖L∞(TL)(‖p±1 ‖BV(D) + ‖p±2 ‖BV(D)). (3.11)

Now using d’Alembert integral representation formula, we obtain

‖A⊥, 1 − A⊥, 2‖L1(TL)

≤ ‖A0
⊥, 1 − A0

⊥, 2‖L1(TL) + t‖A1
⊥, 1 − A1

⊥, 2‖L1(TL)

+ 2(‖p−1 ‖L∞(Q) + ‖p+
1 ‖L∞(Q))t

∫ t

0

dτ ‖A⊥, 1 − A⊥, 2‖L1(TL)

+ t

∫ t

0

dτ (‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D)) (3.12)

and

‖∂xA⊥, 1 − ∂xA⊥, 2‖L1(TL)

≤ ‖A0 ′
⊥, 1 − A0 ′

⊥, 2‖L1(TL) + ‖A1
⊥, 1 − A1

⊥, 2‖L1(TL)
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+ (‖p−1 ‖L∞(Q) + ‖p+
1 ‖L∞(Q))

∫ t

0

dτ ‖A⊥, 1 − A⊥, 2‖L1(TL)

+
∫ t

0

dτ (‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D)). (3.13)

Using a Gronwall lemma, Eq. (3.12) leads to

‖A⊥, 1 − A⊥, 2‖L1(TL)

≤ e2t2(‖p−
1 ‖L∞(Q)+‖p+

1 ‖L∞(Q))

(
‖A0

⊥, 1 − A0
⊥, 2‖L1(TL)

+ t‖A1
⊥, 1 − A1

⊥, 2‖L1(TL) + t

∫ t

0

dτ (‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D))

)
.

(3.14)

Substituting estimates (3.8)–(3.14) into the addition of Eqs. (3.7), after time inte-
gration, we get∫

D
dxda ζh(p−1 − p−2 ) +

∫
D
dxda ζh(p+

1 − p+
2 )

≤
∫
D
dxda ζh(p−0 1 − p−0 2) +

∫
D
dxda ζh(p+

0 1 − p+
02)

+ C̃
{
‖A0

⊥, 1 −A0
⊥, 2‖L1(TL) + ‖A0 ′

⊥, 1 −A0 ′
⊥, 2‖L1(TL) + ‖A1

⊥, 1 −A1
⊥, 2‖L1(TL)

+
∫ t

0

dτ(‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D))

}
+ Ĉ

∫ t

0

dτ ε(h)

+ C�

∫ t

0

dτ (‖A⊥, 1 − A⊥, 2‖L∞(TL) + ε(h))

· (‖p−1 ‖BV(D) + ‖p−2 ‖BV(D) + ‖p+
1 ‖BV(D) + ‖p+

2 ‖BV(D)), (3.15)

where C� is a purely numerical constant,

C̃ := C̃(t, ‖p±1 ‖L∞(Q), ‖∂xA⊥, 1‖L∞(Ω), ‖∂xA⊥, 2‖L∞(Ω)),

Ĉ := Ĉ(‖∂xA⊥, 1‖L∞(0,T ;L1(TL)), ‖∂xA⊥, 2‖L∞(0,T ;L1(TL))),

and C̃ is nondecreasing in time. Let us introduce the translation operator τz defined
as follows. For any z = (zx, za) ∈ R2, for any functions f ∈ BV(D) and g ∈ BV(TL)
we define τzf := f(· + zx, · + za) and τzg := g(· + zx). Now we set p±1 = p±,
p±2 = τzp

±, p±0 1 = p±0 , p±0 2 = τzp
±
0 , A⊥, 1 = A⊥, A⊥, 2 = τzA⊥, A0

⊥, 1 = A0
⊥,

A0
⊥, 2 = τzA0

⊥, A1
⊥, 1 = A1

⊥, and A1
⊥, 2 = τzA1

⊥. Dividing inequality (3.15) by |z|,

1150001-12



January 10, 2012 10:56 WSPC/103-M3AS 1150001

Global Weak Solutions for the Relativistic Waterbag Continuum

passing to the limit in inequality (3.15) as h → 0 and using a Gronwall lemma we
obtain
‖τzp− − p−‖L1(D)

|z| +
‖τzp+ − p+‖L1(D)

|z|

≤ e
eCt

{
‖τzp−0 − p−0 ‖L1(D)

|z| +
‖τzp+

0 − p+
0 ‖L1(D)

|z|

+ C̃
[
‖τzA0

⊥ − A0
⊥‖L1(TL)

|z| +
‖τzA0 ′

⊥ − A0 ′
⊥ ‖L1(TL)

|z| +
‖τzA1

⊥ − A1
⊥‖L1(TL)

|z|

]

+ C�

∫ t

0

dτ
‖τzA⊥ − A⊥‖L∞(TL)

|z| (‖p−‖BV(D) + ‖p+‖BV(D))

}
. (3.16)

After taking the supremum in z ∈ R2 in (3.16) we obtain

‖p−‖BV(D) + ‖p+‖BV(D)

≤ e
eCt

{
‖p−0 ‖BV(D) + ‖p+

0 ‖BV(D) + C̃[‖A0
⊥‖BV(TL) + ‖A0 ′

⊥ ‖BV(TL)

+ ‖A1
⊥‖BV(TL)] + C�‖∂xA⊥‖L∞(Ω)

∫ t

0

dτ (‖p−‖BV(D) + ‖p+‖BV(D))

}
. (3.17)

Finally using again a Gronwall lemma, estimate (3.17) leads

‖p−‖L∞(0,T ;BV(D)) + ‖p+‖L∞(0,T ;BV(D))

≤ CBV(T, ‖p±0 ‖BV(D), ‖A0
⊥‖BV(TL), ‖A0 ′

⊥ ‖BV(TL),

‖A1
⊥‖BV(TL), ‖p±‖L∞(Q), ‖∂xA⊥‖L∞(Ω)

)
,

which ends the proof.

3.3. Global weak solutions

We are now able to prove the global existence of weak solutions for the system
(2.9)–(2.12). We have the following global existence theorem

Theorem 3.4. (Existence of global weak solutions) Let us assume that p±0 ∈
L2 ∩ L∞ ∩ BV(D), and A0

⊥, A0 ′
⊥ , A1

⊥ ∈ L2 ∩L∞ ∩BV(TL), then the solution
(p±ε , φε,A⊥ ε) of the system (3.1) and (2.10)–(2.12) has a weak limit

p± ∈ C (0, T ;Lp(D)) ∩ L∞(Q) ∩ L∞(0, T ; BV(D)),

φ ∈ C (0, T ;Lp(TL)) ∩W 1,∞(Ω) ∩ L∞(0, T ;W 2,1(TL)),

A⊥ ∈ C (0, T ; Lp(TL)) ∩ W1,∞(Ω) ∩ L∞(0, T ; W2,1(TL)),

(3.18)

for all p ∈ [1,+∞[, which satisfies the system (2.9)–(2.12) in D ′(Q) (in sense of
distribution).
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Proof. Since p±ε ∈ L∞(0, T ; BV(D)), ∂xφε ∈ L∞(0, T ;L2(TL)) and ∂xA⊥ ε ∈
L∞(0, T ; L2(TL)), we have{

∂xp
±
ε ∈ L∞(0, T ;Mb(D)),

∂xφε ∈ L∞(0, T ;Mb(TL)) and ∂xA⊥ ε ∈ L∞(0, T ; Mb(TL)),
(3.19)

where Mb(K) is the space of bounded Radon measure on K, and Mb = Mb ×
Mb. Using (3.19) and since |∂xH±

ε | ≤ |p±ε | + |∂xA⊥ ε| + |∂xφε|, we get ∂xH±
ε ∈

L∞(0, T ;Mb(D)). Since Mb(D) ↪→ W−δ,p(D), for p ∈ (1, 2
2−δ ) and δ ∈ (0, 2),

the sequence {−ε∂2
xp

±
ε + ∂xH±

ε } is bounded in L∞(0, T ;W−1−δ,p(D)) and using
Eq. (3.1) we have {∂tp

±
ε } ∈ L∞(0, T ;W−1−δ,p(D)), which means that there exists

a constant C� independent of ε such that

‖p±ε (t) − p±ε (τ)‖W−1−δ,p(D) ≤ C�|t− τ |, ∀ t, τ > 0. (3.20)

Since BV(D) ↪→W 1−δ,p(D), for p ∈ (1, 2
2−δ ) and δ ∈ (0, 2), we get

‖p±ε (t) − p±ε (τ)‖W 1−δ,p(D) ≤ ‖p±ε (t) − p±ε (τ)‖BV(D) ≤ 2CBV, (3.21)

where CBV is independent of ε. Using (3.20) and (3.21) and the interpolation
inequality ‖v‖W s,p(D) ≤ CI‖v‖1−σ

W 1−δ,p(D)
‖v‖σ

W−1−δ,p(D), where σ ∈ (0, 1) is chosen
small enough, and s = 1 − 2σ − δ > 0, we then get ‖p±ε (t) − p±ε (τ)‖W s,p(D) ≤
CI(2CBV)1−σCσ

� |t − τ |σ , which means that the sequence {p±ε } is bounded in
C σ(0, T ;W s,p(D)) for all T < ∞ with 1 < p < 2

2−δ < 2
1+2σ . Therefore, noting

that the Sobolev embedding W s,p(D) ↪→ Lp(D) is compact, the Ascoli’s theorem
implies that

{p±ε } is compact in C (0, T ;Lp(D)), ∀T <∞. (3.22)

Let T <∞ be fixed, using (3.22), we can extract a subsequence {p±εn
} (with εn → 0,

as n→ +∞), still noted {p±ε } such that{
p±ε → p± in C (0, T ;Lp(D)),

p±ε → p± a.e. on Q.
(3.23)

Therefore, using a diagonal extraction procedure, we can get a subsequence still
noted {p±ε } such that (3.23) holds for all T < ∞. Now, since ∂tA⊥ ε and ∂xA⊥ ε

belong to L∞(0, T ; L2(TL)) there exist two constants K� and Kc independent of ε
such that for all t, τ > 0,{

‖A⊥ ε(t) − A⊥ ε(τ)‖L2(TL) ≤ K�|t− τ |,
‖A⊥ ε(t) − A⊥ ε(τ)‖H1(TL) ≤ Kc.

(3.24)

From space interpolation result [W θ,q(TL),W ν,q(TL)] = W σν+(1−σ)θ,q(TL), for
θ, ν ∈ R, σ ∈ (0, 1), q ∈ (1,∞), and using (3.24) we obtain ‖A⊥ ε(t) −
A⊥ ε(τ)‖H1−σ(TL) ≤ KIK1−σ

c Kσ
� |t − τ |σ , which means that the sequence {A⊥ ε}
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is bounded in C σ(0, T ; H1−σ(TL)). Since the Sobolev embedding H1−σ(TL) ↪→
L2(TL) is compact, the Ascoli’s theorem implies that

{A⊥ ε} is compact in C (0, T ; L2(TL)), ∀T <∞. (3.25)

Let T < ∞ be fixed, using (3.25), we can extract a subsequence {A⊥ εn} (with
εn → 0, as n→ +∞), still noted {A⊥ ε} such that{

A⊥ ε → A⊥ in C (0, T ; L2(TL)),

A⊥ ε → A⊥ a.e. on Ω.
(3.26)

Therefore, using a diagonal extraction procedure, we can get a subsequence still
noted {A⊥ ε} such that (3.26) holds for all T < ∞. Assuming T < ∞ fixed, by
linearity of the Poisson equation (2.11) and since G ∈ L∞(TL × TL) we get

|‖φ‖C (0,T ;Lp(TL)) − ‖φε‖C (0,T ;Lp(TL))| ≤ ‖φ− φε‖C (0,T ;Lp(TL))

≤ CL‖G‖L∞(TL×TL)‖p± − p±ε ‖C (0,T ;Lp(TL)),

which means that {
φε → φ in C (0, T ;Lp(TL)),

φε → φφ a.e. on Ω.
(3.27)

Therefore, using a diagonal extraction procedure, we can get a subsequence still
noted {φε} such that (3.27) holds for all T <∞. Moreover, we have

‖p±ε ‖L∞(Q), ‖φε‖L∞(Ω), ‖A⊥ ε‖L∞(Ω) <∞. (3.28)

The bounds (3.28) and (3.23) imply that (3.23) is true for p ∈ [1,+∞[. Using
(3.23) and (3.26)–(3.28), the Lebesgue dominated convergence theorem implies that
H±

ε → H± in Lp(Q) and thus ∂xH±
ε → ∂xH± in D ′(Q) (in the distributional

sense). In the same way properties (3.23), (3.26), (3.28) and the Lebesgue dominated
convergence theorem implies that A⊥ εργ ε → A⊥ργ in L1(Ω), hence in D ′(Ω).
Using (3.23) and (3.28) we have p±ε → p± in D ′(Q), hence ∂tp

±
ε → ∂tp

± in D ′(Q)
and ε∂2

xp
±
ε → 0 in D ′(Q). Using (3.26) we have ∂2

t A⊥ ε → ∂2
t A⊥ in D ′(Ω) and

∂2
xA⊥ ε → ∂2

xA⊥ in D ′(Ω). Therefore the limit point (p±, φ,A⊥) is a weak solution
in D ′(Q) of the system (2.9)–(2.12).

Now, let us prove that p± ∈ L∞(0, T ; BV(D)). Since {p±ε } ∈ L∞(0, T ;
BV(D)) and p±ε → p± in L∞(0, T ;L1

loc(D)), we obtain ‖p±‖L∞(0,T ;BV(D)) ≤
lim infε→0 ‖p±ε ‖L∞(0,T ;BV(D)) ≤ CBV < ∞. Now, let us prove that φ ∈ L∞(0, T ;
W 2,1(TL)) and A⊥ ∈ L∞(0, T ; W2,1(TL)). Since p± ∈ L∞(0, T ;L1(D)), using Pois-
son equation (2.12), we get φ ∈ L∞(0, T ;W 2,1(TL)). If Φ ∈ C ∞

0 (TL) × C∞
0 (TL)
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then, from d’Alembert integral representation formula, we get∫
TL

dx ∂xA⊥ · ∂xΦ ≤ (‖A0 ′
⊥ ‖BV(TL) + ‖A1

⊥‖BV(TL))‖Φ‖L∞(TL)

+
1
2

∣∣∣∣∣
∫ t

0

ds

∫ 1

0

da

∫
TL

dx (F (s, x+ (t− s), a) − F (s, x− (t− s), a)) · ∂xΦ

∣∣∣∣∣
≤ (‖A0 ′

⊥ ‖BV(TL) + ‖A1
⊥‖BV(TL) + CT ‖F‖L∞(0,T ;L1(0,1;BV(TL))))‖Φ‖L∞(TL),

(3.29)

where

F (s, x± (t−s), a) =
∫ p+(s,x±(t−s),a)

p−(s,x±(t−s),a)

A⊥(s, x± (t− s))√
1 + p2 + |A⊥(s, x± (t− s))|2

dp. (3.30)

Now we have to check that F ∈ L∞(0, T ;L1(0, 1; BV(TL))). Using Eq. (3.30) and
obvious estimates we obtain

τhF − F = F (s, x± (t− s) + h, a) − F (s, x± (t− s), a)

≤ 2(|τhp−| + |τhp+|)|τhA⊥ − A⊥| + |τhp− − p−| + |τhp+ − p+|,

and thus

‖τhF − F‖L∞(0,T ;L1(D)) ≤ h(2
(
‖p−‖L∞(Q) + ‖p+‖L∞(Q))‖A⊥‖L∞(0,T ;BV(TL))

+ ‖p−‖L∞(0,T ;BV(D) + ‖p+‖L∞(0,T ;BV(D)

)
,

which proves (3.29). Finally using (3.29) we obtain∣∣∣∣∫
TL

∂2
xA⊥ · Φ dx

∣∣∣∣ =
∣∣∣∣∫

TL

∂xA⊥ · ∂xΦ dx
∣∣∣∣ ≤ K

(
‖p±‖L∞(0,T ;BV(D),

‖A⊥‖L∞(0,T ;BV(TL)), ‖A0 ′
⊥ ‖BV(TL), ‖A1

⊥‖BV(TL)

)
‖Φ‖L∞(TL),

which proves that A⊥ ∈ L∞(0, T ; W2,1(TL)).

Remark 3.1. Using integral formulation of Poisson (also Ampère equation) and
waves equations, and regularity of the weak solution of Theorem 3.4, in the
same spirit (by duality argument) of the end of the proof of Theorem 3.4, we
can show that ∂2

txA⊥, ∂2
t A⊥ ∈ L∞(0, T ; L1(TL)), hence ∂xA⊥ ∈ W1,1(Ω) and

∂2
txφ ∈ L∞(0, T ;L1(TL)), hence ∂xφ ∈W 1,1(Ω).

3.4. Order preserving solutions

In this section we establish some order or monotonicity properties satisfied by the
weak solution. We have the following theorem.
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Theorem 3.5. The global weak solutions of Theorem 3.4 are order preserving in
the sense that for any a, b ∈ [0, 1] we have

p±0 (·, a) ≤ p±0 (·, b) ⇒ p±(·, ·, a) ≤ p±(·, ·, b), (3.31)

sign(∂ap
±
0 ) = sign(∂ap

±), (3.32)

sign(p+
0 (·, a) − p−0 (·, b)) = sign(p+(·, ·, a) − p−(·, ·, b)). (3.33)

Proof. The proof is based on the Crandall–Tartar theorem concerning relations
between nonexpansive and order preserving mappings.24 Let us set ω̃± = p±1 −p±2 =
p±(t, x, a) − p±(t, x, b), ω± = ∂ap

±, and ρ̃ = p+(t, x, a) − p−(t, x, b), then using
Eq. (3.1) we obtain

∂tω̃
± + ∂x

(
p±1 + p±2
γ±1 + γ±2

ω̃±
)

= ε∂2
xω̃

±, (3.34)

∂tω
± + ∂x

(
p±

γ±
ω±
)

= ε∂2
xω

±, (3.35)

∂tρ̃+ ∂x

(
p+(a) + p−(b)
γ+(a) + γ−(b)

ρ̃

)
= ε∂2

xρ̃. (3.36)

Let us treat the case of Eqs. (3.34) which lead to the property (3.31). The other two
Eqs. (3.35) and (3.36), which lead respectively to the property (3.32) and (3.33),
can be treated in the same way. Let ζh ∈ C∞

0 (R) be a convex regularization of
the modulus function which converges uniformly to | · | as h → 0 and satisfies
|ζ′h| ≤ 1. If we multiply Eq. (3.34) by ζ′h(ω̃±) and integrate in space variable x,
using integration by parts we obtain

d

dt

∫
TL

ζh(ω̃±) = −
∫

TL

dx ζ′h(ω̃±)∂x

(
p±1 + p±2
γ±1 + γ±2

ω̃±
)
− ε

∫
TL

dx |∂xω̃
±|2ζ′′h (ω̃±)

≤ −
∫

TL

dx ∂x

(
p±1 + p±2
γ±1 + γ±2

)∫ eω±

0

ζ′′h (s)sds

≤ ε(h)(‖p±1 ‖L∞(0,T ;BV(D)) + ‖p±2 ‖L∞(0,T ;BV(D)) + ‖∂xA⊥‖L∞(Ω)),

(3.37)

where ε(h) → 0 as h→ 0. Passing to the limit in (3.37) as h→ 0 we obtain

d

dt
‖ω̃±‖L1(TL) ≤ 0, (3.38)

which, after time integration, is equivalent to

‖p±(t, ·, a) − p±(t, ·, b)‖L1(TL) ≤ ‖p±0 (·, a) − p±0 (·, b)‖L1(TL). (3.39)

If we now define the operators T ± :L1
x(TL) → L1

x(TL) by T ±p±0 = p±, obviously
T ± are mapping in L1

x(TL) which conserve the integral, and are nonexpansive
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in L1
x(TL) thanks to property (3.38) or (3.39). Therefore using Proposition 1 of

Ref. 24 the operators T ± are order preserving in the sense that properties (3.31) is
satisfied.

Remark 3.2. Let us note the fact the evolution operators T ± :L1
x(TL) → L1

x(TL)
are nonexpansive in L1

x(TL) does not imply a contraction principle in L1
xa(D) for the

waterbag continuum p±. The nonexpansiveness property involves the same solution
p±, with the same initial data (leading to the removal of electromagnetic field
comparison terms in Eqs. (3.34)–(3.36)), and gives a supplementary information on
the structure of the solution, namely the monotonicity of the waterbag continuum
with respect to the a-variable. On the contrary the L1-contraction principle should
compare two different solutions in L1

xa-norm, with two different initial conditions.
While a L1

xa-contraction principle would have been useful to show uniqueness, as it
usually done for hyperbolic conservation laws, here we need to establish a stability
property with respect to the initial condition to show uniqueness. In fact, in the
case of “weakly” (i.e. by the means of a mean field, for instance the electromagnetic
field) coupled system of first-order conservation laws, new source terms (including
comparison terms between fields) arise and convert the L1-contraction principle
into a L1-comparison principle leading to the L1-stability property of the solutions
with respect to their initial data (see Theorem 3.7).

3.5. Uniqueness of solutions

In this section we show uniqueness of the global weak solutions whose existence
have been proved in Theorem 3.4. To prove uniqueness of the global weak solutions
of the system (2.9)–(2.12), we should perform a Kruzkov’s type analysis18, 47, 48, 66

based on Kruzkov’s entropy inequalities with particular entropies η(·) = |· − ξ|,
the so-called Kruzkov’s entropies. Nevertheless, for heterogeneous scalar conserva-
tion laws Kruzkov’s analysis uses Taylor expansion ingredients and thus requires
high regularity assumptions of heterogeneousness both in time and space, typically
twice continuously differentiable flux functions in time and space. Roughly speak-
ing, our flux functions H±(·, ·, p) are such that ∂xH±(·, ·, p) are at most in W 1,1

tx

for all p ∈ R. In order to show uniqueness with lower regularity assumption, we
could try to use the concept of measure valued solution introduced by Diperna.28, 62

Nevertheless the lack of regularity information of Young measures with respect to
the space variable makes this method more difficult to use. Finally the kinetic for-
mulation of conservation laws developed by many authors in Refs. 59, 61, 54, 55,
60, 25, 19, 20, 21, 36, 64 and 65 yields a simpler framework for showing uniqueness.
Even if measure-valued solutions using Young measures tool are closely related to
kinetic formulation,59 this latter tool deals with simpler topological objects such
that essentially bounded functions instead of Young measures. The fact that kinetic
formulation is an efficient way to prove uniqueness result is now well known but
not in the context of coupled systems like here. To the best of my knowledge there
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is no result concerning “self-consistently”-coupled hyperbolic conservation laws, i.e.
when temporal and spatial inhomogeneities of the flux functions depend “weakly”
of the main unknowns through a mean field (for instance the electromagnetic field
(φ, A⊥)) which itself satisfies a set of partial differential equations, involving the
main unknowns for the definition of their source terms. While kinetic formulation
usually allows to show uniqueness in a general L1-regularity framework, here the
case of coupled systems leads to the estimate of new comparison terms, including
comparison terms between fields (terms (3.75) and (3.79)–(3.81) below), for which
BV regularity of the main unknowns is required. Moreover, the kinetic formulation
formalism allows to make the link between the weak solution of the relativistic
waterbag continuum and the relativistic Vlasov–Maxwell equations with kinetic
entropy defect measure. The following uniqueness proof is based on the ideas devel-
oped in Refs. 25, 60, 59 and 54.

3.5.1. Entropy solutions and kinetic formulation

Let us first recall the notion of entropy solution introduced by Kruzkov47, 48 for
the relativistic waterbag continuum system (2.9)–(2.12), which allows to recover
uniqueness of weak solutions. Let η : R → R be a convex function which is twice
continuously differentiable. Multiplying (3.1) by η(p±ε ), we obtain

∂tη(p±ε ) + ∂xq(t, x, p±ε ) − (∂xq)(t, x, p±ε ) + η′(p±ε )(∂xH)(t, x, p±ε )

= ε∂2
xη(p

±
ε ) − εη′′(p±ε )|∂xp

±
ε |2, (3.40)

where

q(t, x, p±ε ) =
∫ p±

ε

k

η′(p)∂pH(t, x, p)dp,

(∂xq)(t, x, p±ε ) =
∫ p±

ε

k

η′(p)∂2
pxH(t, x, p)dp,

with the Hamiltonian H, given by Eq. (2.13). Using (3.23) we have ∂tη(p±ε ) →
∂tη(p±) in D ′(Q). From (3.23) and (3.26) we get ∂xq(t, x, p±ε ) → ∂xq(t, x, p±)
in D ′(Q). Using (3.23) and (3.26)–(3.28), the Lebesgue dominated conver-
gence theorem implies that η′(p±ε )(∂xH)(t, x, p±ε ) → η′(p±)(∂xH)(t, x, p±) and
(∂xq)(t, x, p±ε ) → (∂xq)(t, x, p±) in D ′(Q). Moreover, we have ε∂2

xη(p
±
ε ) → 0 in

D ′(Q). Finally using the convexity of the entropy η, we can pass to the limit in
(3.40) as ε→ 0 to obtain the following entropy inequality in D ′(Q)

∂tη(p±) + ∂xq(t, x, p±) − (∂xq)(t, x, p±) + η′(p±)(∂xH)(t, x, p±) ≤ 0. (3.41)

Definition 3.1. The triplet (p±, φ,A⊥) satisfying regularity assumptions (3.18)
is an entropy solution of the system (2.9)–(2.12) if it is a solution of (2.9)–(2.12)
in D ′(Q) (whose existence has been proved in Theorem 3.4) and if it satisfies the
entropy inequality (3.41) in D ′(Q) for all convex function η ∈ C 2(R).
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Before going further, let us define the function χ : R2 → {−1, 0, 1} as follows:
χ(ξ, p) := 1, if 0 < ξ < p, χ(ξ, p) := −1, if p < ξ < 0 and χ(ξ, p) := 0 other-
wise. The first theorem establishes the equivalence between the entropy solution of
Definition 3.1 and the kinetic formulation of the relativistic waterbag continuum
system (2.9)–(2.12).

Theorem 3.6. Let the triplet (p±, φ,A⊥) be a global weak solution of the sys-
tem (2.9)–(2.12), given by Theorem 3.4 which satisfies regularity properties (3.18).
Then it is an entropy solution if and only if there exists non-negative measures
m±(t, x, a, p) such that m±((0, T ) × D × R) < +∞ for all T > 0, and such that
kinetic functions χ(p, p±) satisfy the following kinetic equations in D ′(Σ){
∂tχ(p, p±) + ∇x,p · (F(t, x, p)χ(p, p±)) = ∂pm

±(t, x, a, p) + δ(p)S(t, x, p),

χ(p, p±(t = 0)) = χ(p, p±0 ),
(3.42)

while the electromagnetic field (φ,A⊥) satisfies Eqs. (2.10)–(2.12) in D ′(Ω), where
the source terms (densities of charge and current) are given by

ργ(t, x) =
∫ 1

0

da

∫
R

(χ(p, p+) − χ(p, p−))
dp

γ(t, x, p)
,

ρ(t, x) =
∫ 1

0

da

∫
R

(χ(p, p+) − χ(p, p−))dp,

Jx(t, x) =
∫ 1

0

da

∫
R

(χ(p, p+) − χ(p, p−))∂pHdp.

In the above we have used the following notations F = (Fx,Fp)T , Fx = ∂pH,
Fp = −∂xH(∇x,p · F = 0), and S(t, x, p) = Fp.

Proof. Theorem 3.6 states the equivalence between the system constituted of
Eqs. (2.9)–(2.12) and inequality (3.41) in D ′, whose existence of solution endowed
with regularity properties (3.18) have been proved in Theorem 3.4, and the system
constituted by Eqs. (3.42) and (2.10)–(2.12) in D ′. Since equations for the electro-
magnetic field remain identical in both formulation, i.e. especially Eqs. (2.10)–(2.12)
are satisfied in D ′(Ω), it remains to show the equivalence in D ′(Q) of Eqs. (2.9)
and (3.41) on one hand and Eqs. (3.42) on the other hand. For this purpose we
define the distributions m±, which are solutions of (3.42), and we show that the
distributions m± are non-negative and locally bounded if and only if (p±, φ,A⊥)
is an entropy solution characterized by Definition 3.1. Let us first define m±.
Since p± ∈ C (0, T ;L1(D)) ∩ L∞(Q), F ∈ L∞(Q), and for a.e. (t, x) ∈ Ω,
S(t, x, ·) ∈ C∞

b (R), we can define the distributions m± as

m±(t, x, a, p) := ∂t

∫ p

0

χ(ξ, p±)dp+ ∂x

∫ p

0

χ(ξ, p±)Fx(t, x, ξ)dξ

+Fp(t, x, p)χ(p, p±) −
∫ p

0

δ(ξ)S(t, x, ξ)dξ. (3.43)
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By taking the distributional derivative of (3.43) with respect to p-variable, we obtain
(3.42) in D ′(Σ). If we multiply (3.42) by η′(p), with η′ ∈ D(R), integrate with
respect to p, we obtain

∂tη(p±) + ∂xq(t, x, p±) − (∂xq)(t, x, p±) + η′(p±)(∂xH)(t, x, p±)

= −
∫

R

η′′(p)m±dp, (3.44)

where we have used the identity∫
R

ψ′(ξ)χ(ξ, p)dξ = ψ(p) − ψ(0), ∀ p ∈ R, ∀ψ ∈W 1,∞
loc (R), (3.45)

and the fact that ∫
R

{δ(p)S(t, x, p)η′(p) + η′′(p)χ(p, p±)Fp}dp

= −η′(p±)(∂xH)(t, x, p±) + (∂xq)(t, x, p±). (3.46)

Now let us prove that (p±, φ,A⊥) is an entropy solution if m± ≥ 0 are locally
bounded measures. We assume that m± are non-negative measures on Σ such that∫
Σm

±dtdxdadp < ∞, for all T > 0 and we set B = max(B−,B+) with B± :=
‖p±‖L∞(Q) <∞. In short, we want to extend (3.44) from η′ ∈ D(R) to η ∈ C 2(R)
and convex, so that convexity of η and non-negativity of m± lead to (3.41). To
this aim, we first extend (3.44) for all η ∈ C 2(R) subquadratic, i.e. such that η′′

is bounded. If η ∈ C∞(R) is subquadratic, we truncate η with a cutoff function
ϕ ∈ C∞

0 (R), such that ϕ(p) = 1, for |p| ≤ 1, and ϕ(p) = 0, for |p| ≥ 2. We set
ϕR(p) = ϕ(p/R), ηR = ηϕR. Therefore ηR ∈ D(R) and (3.44) is satisfied for ηR.
Now for R > B, we have ηR(p±) = η(p±) and qR(t, x, p±) = q(t, x, p±) for a.e.
(t, x, a) ∈ Q so that (3.44) holds in D ′(Q) when we replace the right of (3.44) by
−
∫

R
η′′R(p)m±dp. It remains to notice that η′′R = ηϕ′′(p/R)/R2 +(2/R)η′ϕ′(p/R)+

η′′ϕ(p/R). Since ϕ(p/R) monotically converges to one, and thanks to the bounds on
η′′, we can pass to the limit as R → ∞ to obtain

∫
R
η′′ϕRm

±dp →
∫

R
η′′m±dp. In

a similar way the contribution of the first two terms vanishes in the limit R→ ∞.
Equation (3.44) is then true for all η ∈ C∞(R) subquadratic. Similarly Eq. (3.44)
can be generalized to all functions η ∈ C 2(R) convex and subquadratic by mollifying
η and passing to the limit, thanks to the bounds on η, m± and p±. Let us now
release the subquadratic constraint by assuming η ∈ C 2(R) and convex. Since
B± < ∞, we can change the values of η(p) for large p to obtain a subquadratic
function η̃ as follows. If we set M = sup|p|≤B |η′′(p)|, we then define the C 2-convex
subquadratic function η̃ such that η̃′′ = inf{η′′,M} and η̃ = η for |p| ≤ B. We
then have η(p±) = η̃(p±), η′(p±) = η̃′(p±) and q(t, x, p±) = q̃(t, x, p±) a.e. in Q, so
that (3.44) holds for η̃. The convexity of η̃ implies that −

∫
R
η̃′′(p)m±dp < 0, hence

entropy inequality is satisfied.
Conversely, let us prove that if now (p±, φ,A⊥) is an entropy solution, then m±

are non-negative locally bounded measures. If η ∈ C∞(R), is a convex function, such
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that η′ ∈ D(R), then by comparing (3.41) and (3.44) we have
∫

R
η′′(p)m±dp ≥ 0.

Nevertheless, there is no function η such that η′′ = ϕ where ϕ is a non-negative
function in D+(R). Thus once again, we can change the values of ϕ(p) for large p
to construct such a function. To achieve this construction, we have to study the
behavior of m± for large p. In fact for |p| > B, Eq. (3.43) becomes ∂tp

± + ∂xH =
m±. If we compare this latter equation with Eq. (2.9) we obtain that m± = 0
in D ′((0, T ) × D × (R\[−B,B])), hence m± are locally bounded measures. If we
now take ϕ ∈ D+(R) and define η ∈ C∞ such that η′′ = ϕ, then η is a convex
function. If we now construct η̃ ∈ D(R) by multplying η with a cutoff function
which is equal to one over the interval [−B,B], then η(p±) = η̃(p±), η′(p±) = η̃′(p±)
and q(t, x, p±) = q̃(t, x, p±) on Q. Moreover, Eq. (3.44) (respectively, (3.41)) holds
for η̃ (respectively, η), and

∫
R
ϕm±dp =

∫
R
η̃′′m±dp. Using these properties, the

comparaison of (3.44) and (3.41) leads to∫
R

η̃′′m±dp =
∫

R

η′′m±dp =
∫

R

ϕm±dp ≥ 0, ∀ϕ ∈ D+(R),

which means that m± are non-negative measures on Σ.

Remark 3.3. According to the equivalence Theorem 3.6, existence of entropy
weak solutions (cf. Definition 3.1) for the system constituted of Eqs. (2.9)–(2.12)
and inequality (3.41) in D ′, implies the existence of kinetic solutions for the
system constituted of Eqs. (3.42) and (2.10)–(2.12) in D ′. The existence of
entropy weak solutions with regularity properties (3.18) have been proved in
Theorem 3.4. One could also prove directly existence of kinetic solutions for
Eqs. (3.42) and (2.10)–(2.12), and use Theorem 3.6 to deduce existence of entropy
weak solutions for Eqs. (2.9)–(2.12) and (3.41). To this aim, we can use the ideas
developed in Refs. 60, 59, 54 and 25 which follow the Boltzmann approach to classi-
cal gas dynamics (hydrodynamic limit as the mean free path is vanishing). The pro-
cedure would start by studying the global strong solutions of the Vlasov–Maxwell
equations constituted of field Eqs. (2.10)–(2.13) and kinetic transport equations

∂tf
± + ∇x,p · (f±

J∇x,pH) + λf± = g± + h, with J =
(

0 1
−1 0

)
, λ > 0,

(3.47)

and where the source term g± = g±(t, x, a, p) is a given function and h = −(∂xH)
(t, x, 0). The coupling between field equations (2.10)–(2.12) and kinetic trans-
port equations (3.47) are obtained by the definition of the following charge and
current densities ργ =

∫ 1

0 da
∫

R
dp (f+ − f−)/γ, ρ =

∫ 1

0 da
∫

R
dp (f+ − f−), and

Jx =
∫ 1

0
da
∫

R
dp (f+−f−)∂pH. The superscripts ± and the parameter a can been

seen as parameters describing different species of groups of particles in the plasma.
Existence of the global strong solutions can be obtained in two steps.37 The first
one consists in reducing the problem to estimate the decrease of f±(t, x, a, p) when
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|p| → ∞ by using a priori bounds on distribution functions (Lp-norm, energy, . . . ),
their first velocity moments (charge and current densities), fields (using integral
representation formula for the fields) and their derivatives, the method of char-
acteristics, the construction of a fixed-point application associated to an iterative
scheme in time, classical arguments of compactness and Cauchy sequences. The
second step consists in obtaining the decrease of f(t, x, a, p) with respect to momen-
tum p at infinity (or the control of the p-momentum supports of f±, i.e. supports
of f± should remain compact if initially they are) from a priori estimates and the
method of characteristics or the method of propagation of moments and dispersion
estimates.53 Afterwards Eqs. (3.47) allow one to build new kinetic equations which
are obtained by setting g± = λχ(p, p±(t, x, a)) with p±(t, x, a) =

∫
R
f±(t, x, a, p)dp,

and can be viewed as approximations of kinetic equations (3.42). Existence of global
strong solutions for these new kinetic equations can be achieved by using a Banach
fixed-point theorem. These new kinetic equations can be interpreted as BGK-type
relaxation models towards the equilibrium χ(p, p±) where the relaxation parame-
ter λ plays the role of a collisional frequency. The main problem is then to prove
that Eqs. (3.47) admit solution of the form f±(t, x, a, p) = χ(p, p±(t, x, a)) when
the source term takes the form −λf± + g± = −λ(f± − χ(p, p±)) = ∂pm

±
λ while

passing to the limit as λ → ∞. Therefore Eqs. (3.42) are obtained by passing to
the limit in the BGK-type relaxation models (3.47) as the relaxation parameter λ
tends to infinity (hydrodynamic limit). The passage to the limit relies on strong
compactness argument in L1 (Ascoli’s theorem, BV bounds or time and spatial
equi-continuity in L1 and uniform spatial equi-integrability). This way of proving
existence of kinetic solutions for Eqs. (3.42) and (2.10)–(2.12), yields rather lengthy
and tedious calculations than those of the alternative which consists in proving
existence of entropy weak solutions of Eqs. (2.9)–(2.12) and use the equivalence
Theorem 3.6.

3.5.2. Kinetic entropy defect measure properties

The kinetic entropy defect measures satisfy the following properties.

Proposition 3.1. The measures m± defined in Theorem (3.6) satisfy

(i) (Total mass of the measures): ∀T > 0∫
Σ

m±(t, x, a, p)dtdxdadp

≤ 1
2
‖p±0 ‖L2(D) −

∫
Σ

(∂xH)(t, x, p)χ(p, p±)dtdxdadp. (3.48)

(ii) We have ∫ T

0

dt

∫
D
m±(t, x, a, p)dxda ≤ µ±

T (p) ∈ L∞
0 (R), (3.49)
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where L∞
0 (R) is the set of bounded functions which vanish at infinity and

µ±
T (p) := 1p≥0‖(p±0 − p)+‖L1(D) + 1p≤0‖(p±0 − p)−‖L1(D)

+ (‖∂xφ‖L∞(Ω) + ‖∂xA⊥‖L∞(Ω))|{(t, x, a) ∈ Q; s.t. p± > |p|}|.
(3.50)

(iii) We have m±(t, x, a, p) = 0, for p > sup(t,x,a)∈Q p
± and p < inf(t,x,a)∈Q p

±.
(iv) If we consider a domain O of R+ × D, then m± = 0, on O whenever p± ∈

C ∩W 1,1(O).

Proof. In fact, since m± = 0 in D ′((0, T )×D × (R\[−B,B])), inequality (3.44) is
true for all convex function η ∈ C 2(R). If we now write Eq. (3.44) for η ∈ C 2(R) a
non-negative convex subquadratic function such that η(0) = 0, then η(p±(t, ·, ·)) ∈
L1(D) for all t > 0. Integrating Eq. (3.44) on Q, using (3.46) and the periodicity of
S with respect to the x-variable we obtain∫

Σ

η′′m±dtdxdadp ≤
∫
D
η(p±0 ) +

∫
Σ

(η′(p)δ(p) + η′′(p)χ(p, p±))Fpdtdxdadp

≤
∫
D
η(p±0 ) −

∫
Σ

(∂xH)(t, x, p)η′′(p)χ(p, p±)dtdxdadp. (3.51)

If we take η(p) = p2/2 we obtain (3.48).
Using (3.48) with Kruzkov’s entropy η(p) = (p − p0)+ (respectively, η(p) =

(p− p0)−) with p0 > 0 (respectively, p0 < 0) yields η′(p) = H(p− p0) (respectively,
η′(p) = −H(p0 − p)), η′′(p) = δ(p− p0) (respectively, η′′(p) = δ(p− p0)) and

∫ T

0

dt

∫
D
m±(t, x, a, p0)dtdxda

≤ ‖(p±0 − p0)+‖L1(D) +
∫

Σ

(H(p− p0)δ(p) + δ(p− p0)χ(p, p±))Fpdtdxdadp

≤ ‖(p±0 − p0)+‖L1(D)

+ (‖∂xφ‖L∞(Ω) + ‖∂xA⊥‖L∞(Ω))|{(t, x, a) ∈ Q; s.t. |p±| > |p0|}|.

For negative values of p0 we use the same argument with entropy η(p) =
(p − p0)−. Therefore we obtain the upper bound (3.49) and (3.50). Let us
note that µ±

T (p) vanish at infinity, thanks to the Lebesgue dominated con-
vergence theorem, hence µ±

T ∈ L∞
0 (R). Notice also that µ±

T ∈ L1(R) and
using (3.50) we get ‖µ±

T ‖L1(R) ≤ 2(‖p±0 ‖L∞(D)‖p±0 ‖L1(D) + TL‖p±‖L∞(Q)). To
prove (iii) we choose η(p) ≡ 0 for p ≤ sup(t,x,a)∈Q p

± and strictly convex for
p > sup(t,x,a)∈Q p

±. Therefore using (3.51) we get
∫
Σ η

′′m±dtdxdadp ≤ 0 which
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means that m± = 0, ∀ p > sup(t,x,a)∈Q p
±. Similarly we choose η(p) ≡ 0 for

p ≥ inf(t,x,a)∈Q p
± and strictly convex for p < inf(t,x,a)∈Q p

±. Therefore using (3.51)
we get

∫
Σ
η′′m±dtdxdadp ≤ 0 which means that m± = 0, ∀ p < inf(t,x,a)∈Q p

±.
Finally property (iv) results from the fact that (3.41) is an equality for p± ∈
C ∩W 1,1(O).

3.5.3. Uniqueness

The proof of uniqueness is based on the regularization by convolution of the
kinetic equations (3.42) in order to use the chain rule. We then define four mol-
lifiers ζα ∈ D(R), ζα ≥ 0, with α ∈ {t, x, a, p}, such that

∫
R
ζα(u)du = 1, ζα

is even, ζα′ is odd, and supp ζα ⊂ [−1, 1]. If we note z = (z1, z2) = (x, p), we
define ζε(t, x, p, a) = ζεt(t)ζεx (x)ζεp (p)ζεa(a) = ζεt(t)ζεz (z)ζεa(a) with εz = εz1εz2

and where ζεα(α) = ε−1
α ζα(α/εα). In the following we will use the notations

f± = f±(t, x, p, a) = f±(t, z, a) = χ± = χ(p, p±(t, x, a)), f±
ε = χ(p, p±) ∗ ζε,

and m±
ε = m± ∗ ζε.

Before proving the uniqueness we need to establish a technical lemma and
proposition.

Lemma 3.1. The kinetic functions f±
ε satisfy in D ′(Σ)

∂tf
±
ε +∇x,p · (F(t, x, p)f±

ε ) = ∂pm
±
ε (t, x, a, p)+(δ(p)S(t, x, p))∗ζε +R±

ε , (3.52)

where limε→0 R±
ε = 0 in L1

loc(Σ) for all T > 0. Moreover, for all ψ ∈ D(Q) we have∣∣∣∣∫
Q

m±
ε (t, x, a, p)ψ(t, x, a)dtdxda

∣∣∣∣ ≤ 2‖ψ‖L∞(Q) sup
{ξ; |p−ξ|≤εp}

µ±
T+εt

(ξ). (3.53)

Proof. Since we have taken the convolution product of the kinetic equations (3.42)
by ζε we get

R±
ε = ∇x,p · (F(t, x, p)f±

ε (t, x, p, a))−∇x,p · (F(t, x, p)f±(t, x, p, a)) ∗ ζε. (3.54)

If we multiply (3.54) by the test function ψ ∈ D(Σ), integrate the obtained results
over Σ, use integration by parts with respect to z-variable and use the fact that ζεt ,
ζεa are even and ζ′εx

, ζ′εp
are odd, we obtain 〈R±

ε , ψ〉 = 〈∇x,p · (F)f±
ε , ψ〉+ 〈L±

ε , ψ〉,
where

L±
ε (t, z, a) =

∫
R4
dt′dz′da′(F(t, z) −F(t′, z′))f±(t′, z′, a′)

· ∇zζε(t− t′, z − z′, a− a′).

Since ∇z · F = 0, we get R±
ε = L±

ε . Let us now make the following decomposition
L±

ε = L±1
ε + L±2

ε , where

L±1
ε =

∫
R4
dt′dz′da′ f±(t′, z′, a′)(F(t, z) −F(t′, z))

· ∇zζε(t− t′, z − z′, a− a′), (3.55)
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L±2
ε =

∫
R4
dt′dz′da′ f±(t′, z′, a′)(F(t′, z) −F(t′, z′))

· ∇zζε(t− t′, z − z′, a− a′). (3.56)

Let us first estimate (3.55). We define the compact set Ktz = Kt × Kz ⊂ Q, the
compact set Ka ⊂ [0, 1] and K = Ktz×Ka. Therefore, using some change of variable
and Taylor expansion with integral remainder, we have

‖L±1
ε ‖L1(K) ≤ ‖f±‖L∞(Σ)

∫
Ktz

dtdz

∫
Ka

da

∫
R2
dz′da′

1
εz

×
∣∣∣∣∫

R

dt′(F(t, z) −F(t′, z))ζεt(t− t′)
∣∣∣∣ ζεa(a− a′)|(∇zζεz )(z − z′)|

≤ ‖f±‖L∞(Σ)‖∇zζ
z‖L1(R)

|Ka|
εz

∫ 1

0

dτ

∫
Ktz

dtdz

·
∫
|u|≤1

duεt|u|ζt(u)|∂tF(t− εtτu, z)|

≤ εt

εz
‖∇zζ

z‖L1(R)‖∂tF‖L1(Kεt
tz)‖uζt(u)‖L1(R), (3.57)

where the compact set Kεt
tz = Kεt

t × Kz tends to Ktz as ε → 0. Since F ∈
L1(Rp,W

1,1(Ω)) (see Remark 3.1), if we choose εz → 0, and εt → 0 such that
εt/εz → 0, then limε→0 L±1

ε = 0 in L1
loc(Σ). Let us now deal with the term (3.56).

Using Taylor expansion with integral remainder, the term (3.56) can be decomposed
as follows L±2

ε = L±21
ε + L±22

ε , where

L±21
ε =

2∑
i,j=1

∫
R4
dt′dz′da′

∫ 1

0

dτ(∂z′
j
Fi(t′, z′ + τ(z − z′)) − ∂z′

j
Fi(t′, z′))

· (z − z′)jf
±(t′, z′, a′)∇ziζε(t− t′, z − z′, a− a′), (3.58)

L±22
ε =

2∑
i,j=1

∫
R4
dt′dz′da′∂z′

j
Fi(t′, z′)

· (z − z′)jf
±(t′, z′, a′)∇ziζε(t− t′, z − z′, a− a′). (3.59)

Using some change of variable we obtain for the term (3.58),

‖L±,21
ε ‖L1(K) ≤

2∑
i,j=1

∫ 1

0

dτ

∫
Kt

dt

∫
|u|<1

du

∫
Ka

da

∫
Kεt

t

dt′
∫
Kεz

z

dz′

·
∫
Kεa

a

da′|f± ′||u · ∇uζ
z(u)||∂z′

j
Fi(t′, z′ + εzτu)

− ∂z′
j
Fi(t′, z′)|ζεt(t− t′)ζεa(a− a′)

≤ ‖u · ∇uζ
z(u)‖L1(D)

2∑
i,j=1

ωKεtz
tz

(∂zjFi, εz), (3.60)
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where we define the modulus of continuity ωK(g, h) := sup|z|≤h ‖g(·, · + z) −
g(·, ·)‖L1(K) for any compact set K ⊂ Q and function g ∈ L1(0, T ;W 1,1

loc (D)).
Notice that the compact set Kεtz

tz = Kεt
t × Kεz

z tends to Ktz as ε → 0. Since
F ∈ L1(Rp,W

1,1(Ω)) (see Remark 3.1), we have limε→0 L±21
ε = 0 in L1

loc(Σ). Let
us now deal with the term (3.59). We first show that L±22

ε is bounded in L1
loc(Σ).

Since F ∈ L1(Rp,W
1,1(Ω)) (see Remark 3.1), we have

‖L±,22
ε ‖L1(K) ≤

2∑
i,j=1

‖u · ∇uζ
z(u)‖L1(D)‖f±‖L∞(Σ)‖∂zjFi‖L1(Kε) <∞.

In order to conclude we just need to observe that limε→0 L±22
ε = −∇z ·

(Fi(t, z))f±(t, z, a) = 0 in L1
loc(Σ), when f± and F are smooth, by using the parity

of function ζα, and integration by parts. Indeed the general case follows by density
argument using the above bound. Finally we have proved that limε→0 Rε = 0 in
L1

loc(Σ). Let us show the estimate (3.53). Using convolution properties we obtain∣∣∣∣∫
Q

m±
ε (t, x, a, p)ψ(t, x, a)dtdxda

∣∣∣∣
≤ 2‖ψ txa∗ ζεtxa‖L∞(R3)‖ζp‖L1(R) sup

|u|≤1

∫ T+εt

0

dt

∫ L

0

dx

∫ 1

0

dam±(t, x, a, p+ εpu)

≤ 2‖ψ‖L∞(Q) sup
{ξ; |p−ξ|≤εp}

µ±
T+εt

(ξ)

which ends the proof of the lemma.

A fundamental property of the kinetic entropy defect measures m± saying that,
roughly speaking the measures m± vanish at p = p±, is given in the following
lemma

Proposition 3.2. For all test function ψ ∈ D(D × Rp) we have∫ T

0

∫
R3
m±

ε (t, x, a, p)ν±ε (t, x, a, p)ψ(x, a, p)dtdxdadp → 0, (3.61)

as ε→ 0, where ν±ε = ν± ∗ ζε, with ν± = δ(p− p±(t, x, a)).

Proof. The proof relies on the comparison between |f±|2 = |χ±|2 and |f±| =
sign(p)f± = |χ±| = sign(p)χ±. We define signε(p) = sign(p)∗ ζε and g±ε = signεf

±
ε .

Multiplying (3.52) by signε gives

∂tg
±
ε +∇z · (Fg±ε ) = signε∂pm

±
ε +signεR±

ε +[(δ(p)S(t, x, p))∗ζε]signε +sign′
εFpf

±
ε ,

while the multiplication of (3.52) by 2f±
ε leads to

∂tf
±2

ε + ∇z · (Ff±2

ε ) = 2f±
ε ∂pm

±
ε + 2f±

ε R±
ε + 2[(δ(p)S(t, x, p)) ∗ ζε]f±

ε .
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For all functions ψ ∈ D(D × Rp), and for all T > 0, we have∫
R3

(f±2

ε (T ) − g±ε (T ))ψdzda (3.62)

=
∫

R3
(f±2

ε (0) − g±ε (0))ψdzda (3.63)

+
∫ T

0

∫
R3

(f±2

ε − g±ε )F · ∇zψdtdzda (3.64)

+
∫ T

0

∫
R3
m±

ε (sign′
ε(p) − 2∂pf

±
ε )ψdtdzda (3.65)

+
∫ T

0

∫
R3
m±

ε (signε(p) − 2f±
ε )∂pψdtdzda (3.66)

+
∫ T

0

∫
R3

R±
ε (2f±

ε − signε(p))ψdtdzda (3.67)

+
∫ T

0

∫
R3

(2f±
ε (δ(p)S(t, x, p)) ∗ ζε − sign′

ε(p)Fpf
±
ε )ψdtdzda (3.68)

−
∫ T

0

∫
R3

signε(p)[(δ(p)S(t, x, p)) ∗ ζε]ψdtdzda. (3.69)

Since sign′
ε(p) = 2δ(p) ∗ ζε and ∂pf

±
ε = (δ(p)− ν±) ∗ ζε, we get sign′

ε(p)− 2∂pf
±
ε =

2ν±ε for the term (3.65). We now choose ψ = ψR(x, a, p) = λ(x)βR(p)θ(a), with
λ ∈ D(TL), θ ∈ D([0, 1]), βR ∈ D(R); βR = 1, if |p| < R, and βR = 0, if |p| > R+1,
0 ≤ |β′

R| ≤ C. We set ϕ(x, a) = λθ. Using (3.53), the term (3.66) can be estimated as∫ T

0

∫
R3
m±

ε (signε(p) − 2f±
ε )ϕβ′

Rdtdzda ≤ 3C‖ϕ‖L∞(R2)

∫
R

h±T
R (p)dp,

where h±T
R (p) = (1[R,R+1](p) + 1[−R−1,−R](p)) sup{ξ; |p−ξ|≤1} µ

±
T+1(ξ). Since

h±T
R (p) R→∞−−−−→ 0 for a.e. p ∈ R (recall that µ±

T+1 ∈ L∞
0 ) and |h±T

R | ≤
sup{ξ; |p−ξ|≤1} µ

±
T+1(ξ) ∈ L1(Rp), the Lebesgue dominated convergence theorem

implies that limR→∞
∫

R
h±T

R (p)dp = 0. Now, since p±, ∂xφ, and ∂xA⊥ ∈ L∞(Q)
we have ∫

Σ

|χ(p, p±)||Fp(t, x, p)|dtdxdadp <∞. (3.70)

Using property (3.70) and from the fact that lim
ε→0

g±ε = sign(p)f± = |χ±| in L1
loc(Σ),

lim
ε→0

f±2

ε = f±2
= |χ±| in L1

loc(Σ),
(3.71)
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the terms (3.62)–(3.64) vanish as ε → 0, thanks to the Lebesgue dominated
convergence theorem. Using the properties

δ(p)S(t, x, p) ∗ ϕε
ε→0−−−→ S(t, x, 0) in L1

loc(Σ),

Rε
ε→0−−−→ 0 in L1

loc(Σ) (Lemma 3.1),

signε(p)[(δ(p)S(t, x, p)) ∗ ζε] ε→0−−−→ 0 in L1
loc(Σ),

the terms (3.67)–(3.69) vanish as ε → 0. Finally, using Lebesgue dominated con-
vergence theorem we can pass to the limit as ε→ 0 in (3.62)–(3.69) to obtain

0 ≤ lim
ε→0

2
∫ T

0

∫
R3
m±

ε ν
±
ε (t, x, a, p)ψRdtdxdadp ≤ 3C‖ϕ‖L∞(R2)

∫
R

h±T
R (p)dp.

The above and Lebesgue dominated convergence theorem allows one to pass to the
limit as R → ∞ to get the desired result.

We are now able to prove the uniqueness of the global weak solutions of
Theorem 3.4, thanks to the L1-stability result stated in the following Theorem 3.7.
Let us note that the “self-consistently”-coupled waterbag continuum leads to the
estimate of new terms (more precisely terms (3.75), and (3.79)–(3.81) below) involv-
ing comparison between electromagnetic fields generated by each solution.

Theorem 3.7. (Uniqueness) The global weak solutions of Theorem (3.4) are
unique. Moreover, if (p±i , φi,A⊥,i) with i ∈ {1, 2}, are two solutions then there
exists a constant C† such that

‖p−1 (T ) − p−2 (T )‖L1(D) + ‖p+
1 (T ) − p+

2 (T )‖L1(D)

≤ C†{‖p−01 − p−0 2‖L1(D) + ‖p+
01 − p+

0 2‖L1(D) + ‖A0 ′
⊥, 1 − A0 ′

⊥, 2‖L1(TL)

+ ‖A0
⊥, 1 − A0

⊥, 2‖L1 ∩L∞(TL) + ‖A1
⊥, 1 − A1

⊥, 2‖L1 ∩L∞(TL)},

with the notation ‖ · ‖L1 ∩L∞ = ‖ · ‖L1 + ‖ · ‖L∞ , and where, for i = 1, 2,

C† := C†(T, L, ‖A⊥, i‖L∞(Ω), ‖∂xA⊥, i‖L∞(Ω), ‖p±i ‖L∞(Q), ‖p±i ‖L∞(0,T ;BV(D))).

Moreover, we have

‖φ1(T ) − φ2(T )‖L1(TL)

≤ ‖G‖L1(TL)×L∞(TL){‖p−1 (T ) − p−2 (T )‖L1(D) + ‖p+
1 (T ) − p+

2 (T )‖L1(D)},

and

‖A⊥, 1(T ) − A⊥, 2(T )‖L1(TL)

≤ C‡(T, L, ‖p±1 ‖L∞(Q), ‖p±2 ‖L∞(Q)){‖A0
⊥, 1 − A0

⊥, 2‖L1(TL)

+ ‖A1
⊥, 1 −A1

⊥, 2‖L1(TL) + ‖p−1 − p−2 ‖L∞(0,T ;L1(D)) + ‖p+
1 − p+

2 ‖L∞(0,T ;L1(D))}.
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Proof. Let us set f±
ε,i = χ±

ε,i = χ(p, p±i ) ∗ ζε and m±
ε,i = m±

i ∗ ζε, for i = 1, 2.
Therefore we get

∂t(f±
ε,1 − f±

ε,2)
2 + ∇z · (F1(f±

ε,1 − f±
ε,2)

2) −∇z · ((F1 −F2)f±2

ε,2 )

+ 2f±
ε,1∇z · ((F1 −F2)f±

ε,2) = 2(f±
ε,1 − f±

ε,2){∂p(m±
ε,1 −m±

ε,2)

+ (Rε,1 −Rε,2) + (δ(p)S1(t, x, p)) ∗ ζε − (δ(p)S2(t, x, p)) ∗ ζε}. (3.72)

Let us construct ψ = ψR ∈ D(R3) as follows: ψR = λR(x)θ(a)βR(p) where θ ∈
D([0, 1]) is such that 0 ≤ θ ≤ 1. The function βR is chosen as in the proof of
Proposition 3.2. We choose λ ∈ D+(R) such that λ(x) = 1 for |x| ≤ 1 and we set
λR(x) = λ(x/R). Multiplying Eq. (3.72) by ψR, we obtain after integration∫

D×R

(f±
ε,1(T ) − f±

ε,2(T ))2ψRdxdadp (3.73)

=
∫
D×R

(f±
ε,1(0) − f±

ε,2(0))2ψRdxdadp (3.74)

+
∫ T

0

∫
D×R

[F1(f±
ε,1 − f±

ε,2)
2 − (F1 −F2)f±2

ε,2 ] · ∇zψRdtdxdadp (3.75)

− 2
∫ T

0

∫
D×R

(m±
ε,1 −m±

ε,2)(f
±
ε,1 − f±

ε,2)∂pψRdtdxdadp (3.76)

− 2
∫ T

0

∫
D×R

(m±
ε,1 −m±

ε,2)∂p(f±
ε,1 − f±

ε,2)ψRdtdxdadp (3.77)

+ 2
∫ T

0

∫
D×R

(R±
ε,1 −R±

ε,2)(f
±
ε,1 − f±

ε,2)ψRdtdxdadp (3.78)

+ 2
∫ T

0

∫
D×R

[(δ(p)S1(t, x, p)) ∗ ζε − (δ(p)S2(t, x, p)) ∗ ζε]

· (f±
ε,1 − f±

ε,2)ψRdtdxdadp (3.79)

− 2
∫ T

0

∫
D×R

f±
ε,1∇z · ((F1 −F2)f±

ε,2)ψRdtdxdadp. (3.80)

As in the proof of Proposition 3.2, using the Lebesgue dominated convergence
theorem and the property (3.71) we can pass to the limit first as ε→ 0 and secondly
as R → ∞ in the terms (3.73)–(3.74) to obtain∫

D×R

|f±
1 (T ) − f±

2 (T )|2dxdadp = ‖p±1 (T ) − p±2 (T )‖L1(D),∫
D×R

|f±
0 1 − f±

0 2|2dxdadp = ‖p±01 − p±0 2‖L1(D).

Since Fi ∈ L∞(Q) and p±ε,i ∈ L∞(Q) for i = 1, 2, the Lebesgue dominated conver-
gence theorem allows to pass to limit in the term (3.75), first as ε → 0, secondly
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as R → ∞, so that the term (3.75) vanishes. The term (3.76) can be estimated as
follows:

−2
∫ T

0

∫
D×R

(m±
ε,1 −m±

ε,2)(f
±
ε,1 − f±

ε,2)∂pψRdtdxdadp

≤ C

∫
R

(
h±T

R,1 (p) + h±T
R,2 (p)

)
dp,

where h±T
R,i (p), for i = 1, 2, have same form as h±T

R . Since h±T
R,i (p) R→∞−−−−→ 0 for a.e.

p ∈ R and |h±T
R,i | ≤ sup{ξ; |p−ξ|≤1} µ

± i
T+1(ξ) ∈ L1(Rp), the Lebesgue dominated con-

vergence theorem implies that the term (3.76) vanishes as R→ ∞. Using Lemma 3.1
and Lebesgue dominated convergence theorem the term (3.78) vanishes as ε → 0,
∀R > 0. Using property (3.70) and Lebesgue dominated convergence theorem we
can pass to limit as ε→ 0, ∀R > 0 in the term (3.79) so that it vanishes. Now since
∂pf

±
ε,i = δ(p) ∗ ζε − δ(p− p±ε,i) ∗ ζε, for i = 1, 2, using positivity of the measures m±

ε,i

we get

−2
∫ T

0

∫
D×R

(m±
ε,1 −m±

ε,2)∂p(f±
ε,1 − f±

ε,2)ψRdtdxdadp

≤ 2
∫ T

0

∫
D×R

{m±
ε,1δ(p− p±ε,1) ∗ ζε +m±

ε,2δ(p− p±ε,2) ∗ ζε}ψRdtdxdadp,

which vanish as ε → 0, ∀R > 0, thanks to Proposition 3.2. Using integration by
parts, the term (3.80) can be decomposed as

−2
∫ T

0

∫
D×R

f±
ε,1∇ · ((F1 −F2)f±

ε,2)ψRdtdxdadp

= 2
∫ T

0

∫
D×R

{f±
ε,1f

±
ε,2(F1 −F2) · ∇zψR + f±

ε,2(F1 −F2) · ∇zf
±
ε,1ψR}dtdxdadp.

(3.81)

Since Fi ∈ L∞(Q) and p±ε,i ∈ L∞(Q) for i = 1, 2, Lebesgue dominated convergence
theorem allows one to pass to the limit, first as ε → 0, secondly as R → ∞ in the
first term of the right-hand side of (3.81) so that this latter term vanishes. For the
second term of the right-hand side of (3.81) we get

2
∫ T

0

∫
D×R

f±
ε,2(F1 −F2) · ∇zf

±
ε,1ψRdtdxdadp

≤ 2
∫ T

0

dt

∫
D×R

dxdadp

∫
R3
dt′dx′da′ζε(t− t′, x− x′, a− a′, p− p±1 (t′, x′, a′))

· f±
ε,2(t, z, a)ψR(x, p, a)[∂xp

±
1 (t′, x′, a′)(Fx,1 −Fx,2)(t, x, p±1 (t′, x′, a′))

+ (Fp,1 −Fp,2)(t, x, 0) − (Fp,1 −Fp,2)(t, x, p±1 (t′, x′, a′))]
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≤ 2
∫ T

0

‖|∂xp
±
1 |

txa∗ ζεtxa‖L1(D)‖Fx,1 −Fx,2‖L∞(D)dt

+ 4
∫ T

0

dt

∫
D
dxda sup

ξ∈R

|Fp,1 −Fp,2|(t, x, ξ)

≤ 2‖p±1 ‖L∞(0,T,BV(D))

∫ T

0

‖Fx,1 −Fx,2‖L∞(D)dt

+ 4
∫ T

0

dt

∫
TL

dx sup
ξ∈R

|Fp,1 −Fp,2|. (3.82)

In the above we have used the fact that

‖|∂xp
±
1 |

txa∗ ζεtxa‖L∞(0,T ;L1(D)) ≤ ‖|∂xp
±
1 |

xa∗ ζεxa‖L∞(0,T ;L1(D))

≤ ‖p±1 ‖L∞(0,T,BV(D)).

Using d’Alembert integral representation formula, and a Gronwall lemma we obtain

‖Fx,1 −Fx,2‖L∞(D)

≤ ‖A⊥, 1 − A⊥, 2‖L∞(TL)

≤ ‖A0
⊥, 1 − A0

⊥, 2‖L∞(TL) + t‖A1
⊥, 1 − A1

⊥, 2‖L∞(TL)

+
1
2

⌈
2t
L

⌉∫ t

0

dτ(‖A⊥, 1 − A⊥, 2‖L∞(TL)‖ργ [p1]‖L1(TL)

+ ‖(ργ [p1] − ργ [p2])A⊥, 2‖L1(TL))

≤ e
t
2� 2t

L �
(
‖p−

1 ‖L∞(0,T,L1(D))+‖p+
1 ‖L∞(0,T,L1(D))+π‖A⊥, 2‖L∞(0,T,L1(TL))

)
·
{
‖A0

⊥, 1 − A0
⊥, 2‖L∞(TL) + t‖A1

⊥, 1 − A1
⊥, 2‖L∞(TL) +

π

2

⌈
2t
L

⌉

· ‖A⊥, 2‖L∞(Ω)

∫ t

0

dτ
(
‖p−1 − p−2 ‖L1(D) + ‖p+

1 − p+
2 ‖L1(D)

)}
. (3.83)

Using (3.12) and (3.13), we obtain∫
TL

dx sup
ξ∈R

|Fp,1 −Fp,2|

≤ ‖K‖L1(TL)×L∞(TL)(‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D))

+ (‖∂xA⊥, 1‖L∞(Ω) + ‖∂xA⊥, 2‖L∞(Ω))‖A⊥, 1 − A⊥, 2‖L1(TL)

+ ‖A⊥, 2‖L∞(Ω)‖∂xA⊥, 1 − ∂xA⊥, 2‖L1(TL)
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≤ ‖K‖L1(TL)×L∞(TL)(‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D))

+ C�(t, ‖p±i ‖L∞(Q), ‖A⊥, i‖L∞(Ω), ‖∂xA⊥, i‖L∞(Ω))

·
{
‖A1

⊥, 1 − A1
⊥, 2‖L1(TL) + ‖A0

⊥, 1 − A0
⊥, 2‖W1,1(TL)

+
∫ t

0

dτ (‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D))

}
. (3.84)

From estimates (3.73) to (3.84) we get

‖p−1 (T ) − p−2 (T )‖L1(D) + ‖p+
1 (T ) − p+

2 (T )‖L1(D)

≤ C�(T, L, ‖p±i ‖L∞(Q), ‖p±i ‖L∞(0,T ;BV(D)), ‖A⊥, i‖L∞(Ω), ‖∂xA⊥, i‖L∞(Ω))

·
{
‖A0

⊥, 1 − A0
⊥, 2‖L1 ∩L∞(TL) + ‖A1

⊥, 1 − A1
⊥, 2‖L1 ∩L∞(TL)

+ ‖A0 ′
⊥, 1 − A0 ′

⊥, 2‖L1(TL) +
∫ T

0

dt (‖p−1 − p−2 ‖L1(D) + ‖p+
1 − p+

2 ‖L1(D))

}
+ ‖p−01 − p−0 2‖L1(D) + ‖p+

01 − p+
0 2‖L1(D),

which ends the proof by using once again a Gronwall lemma.

3.6. Return to the relativistic Vlasov–Maxwell equations

The global weak entropy solutions of the relativistic waterbag continuum
(2.9)–(2.12), are linked to special class of weak solutions of the relativistic Vlasov–
Maxwell equations with kinetic entropy defect measure as follows.

Theorem 3.8. The system (2.9)–(2.12) is equivalent to the relativistic Vlasov–
Maxwell

∂tf + ∇x,p · (Ff) = ∂pm, (3.85)

with kinetic entropy defect measure m defined by

m(t, x, p) =
∫ 1

0

(m+(t, x, a, p) −m−(t, x, p, a))da,

and where

f(t, x, p) =
∫ 1

0

(χ(p, p+) − χ(p, p−))da,

Fx = ∂pH, Fp = −∂xH, H =
√

1 + p2 + |A⊥|2 + φ− 1.

(3.86)

In the above equations the waterbag continuum p± are the unique weak entropy
solutions of the system (2.9)–(2.12) given by Theorems 3.4 and 3.7, or equivalently
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are such that the kinetic functions χ(p, p±) and the kinetic entropy defect mea-
sures m± satisfy the kinetic equation (3.42) of Theorem 3.6 in D ′(Σ). The Vlasov
equation (3.85) is coupled to electromagnetic field equations

(∂2
t − ∂2

x + ργ)A⊥ = 0, −∂2
xφ = ρ− 1, ∂tEx + Jx =

1
L

∫
TL

Jx(t, x)dx,

Ex = −∂xφ,

where the charge and current densities are defined by

ργ =
∫

R

f(t, x, p)√
1 + p2 + |A⊥|2

dp, Jx =
∫

R

pf(t, x, p)√
1 + p2 + |A⊥|2

dp, ρ =
∫

R

f(t, x, p)dp.

Moreover, the mass

M(t) =
∫

TL

ρdx

is preserved, while the total energy

E(t) =
∫

D

f(γ − 1)dpdx+
1
2

∫
TL

(|∂tA⊥|2 + |∂xA⊥|2 + |∂xφ|2)dx

is bounded.

Proof. After subtracting Eqs. (3.42) and integrating over a we obtain Eq. (3.85).
Since the kinetic entropy defect measure m is compactly supported in the momen-
tum variable p, after integrating Eq. (3.85) with respect to the momentum variable
p, we get d

dtM(t) = 0. Multiplying Eq. (3.85) by (γ − 1), and integrating with
respect to the variables (x, p), we obtain

∂t

(∫
D

(γ − 1)fdxdp
)
−
∫

D

f∂tγdxdp

+
∫

D

∇ · ((γ − 1)Ff)dxdp−
∫

D

F · ∇γfdxdp =
∫

D

(γ − 1)∂pm.

Since F · ∇γ = −∂xφ∂pγ and ∂tγ = ∂t(|A⊥|2/2)/γ, using Maxwell equations we
have

1
2
d

dt

∫
D

(|∂tA⊥|2 + |∂xA⊥|2)dx = −1
2

∫
TL

ργ
d

dt
|A⊥|2

and the Ampère equation, we get Jx∂xφ = 1
2

d
dt |∂xφ|2, so that we finally obtain

d

dt

(∫
D

f(γ − 1)dpdx+
1
2

∫
TL

(|∂tA⊥|2 + |∂xA⊥|2 + |∂xφ|2)dx
)

= −
∫

D

m
p

γ
dpdx. (3.87)
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Integrating in time (3.87), and using the notation ‖p0‖L2(D) = ‖p−0 ‖L2(D) +
‖p+

0 ‖L2(D), we obtain

E(T ) − E(0) ≤
∫

Σ

(m− +m+)dtdxdadp

≤ 1
2
‖p0‖L2(D) −

∫
Σ

(∂xH)(t, x, p)(χ(p, p−) + χ(p, p+))dtdxdadp

≤ 1
2
‖p0‖L2(D) + (‖∂xA⊥‖L∞(Ω) + ‖∂xφ‖L∞(Ω))

· (‖p−‖L1(Q) + ‖p+‖L1(Q)) <∞,

which ends the proof.

Remark 3.4. The right-hand side of the relativistic Vlasov–Maxwell equa-
tion (3.85), or in other words the kinetic entropy defect measure m, can be inter-
preted as a Lagrange multiplier associated to the constraint that the distribution
function keeps the special shape of a waterbag decomposition (3.86).

Appendix A. Proof of Theorem 3.1

The global existence follows from a Banach fixed point theorem which is based on
the continuity and contraction properties of a map that we will define further. We
first make the change of unknowns p±(t, x, a) = q±(t, x, a) exp(Λt) with Λ > 0.
Therefore the unknowns q± satisfy the following equations

∂tq
± − ε∂2

xq
± + Λq± = −e−Λt∂xH±(qeΛt), (A.1)

where we have used the notation q = (q−, q+) to emphasize the fact that p →
H±(p) with H±(p) =

√
1 + p±2 + |A⊥[p]|2 − 1 + φ[p] = γ±(p) + φ[p] − 1, define

maps which are continuous from L∞(0, T ; L2(D)) into L∞(0, T ;L2(D)) as we will
prove it below. Let us assume q± ∈ L2(0, T ;L2(D)) for all fixed T > 0. We now
consider the problem

∂tr
± − ε∂2

xr
± + Λr± = f± := −e−Λt∂xH±(qeΛt), (A.2)

r±(t = 0, x, a) = r±0 (x, a). (A.3)

Before going further, let us define the functional space W(0, T ) = {ϕ ∈
L2(0, T ; V); ∂tϕ ∈ L2(0, T ; V′)}, with V and its dual V′ respectively defined in
the same way of the spaces (3.2) and (3.3), where the spaces L2(D), H1(TL)
and H−1(TL) are respectively replaced by their vector-valued counterparts L2(D),
H1(TL) and H−1(TL). In the following pα

L,i(t), i ∈ N∗, denote polynomials in time
of degree less than or equal to α ∈ R+ and �r� stands for the smallest integer
greater than r.
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Let us now show that for all T > 0, f± ∈ L2(0, T ;V ′). Obviously we have

‖H±(qeΛt)e−Λt‖L2(Q) ≤ ‖q‖L2(0,T ;L2(D)) + ‖|A⊥[qeΛt]|e−Λt‖L2(Ω)

+ ‖φ[q]‖L2(Ω). (A.4)

Using d’Alembert integral representation formula, we obtain

‖|A⊥[qeΛt]|e−Λt‖L2(Ω) ≤
1

(2Λ)1/2
‖A0

⊥‖L2(TL) +
(
L

2

⌈
2T
L

⌉)1/2 1
2Λ

‖A1
⊥‖L2(TL)

+
(
L

⌈
2T
L

⌉
1

2Λ

)1/2
T

2
(‖q−‖L2(Q) + ‖q+‖L2(Q)). (A.5)

Using (A.4) and (A.5), we obtain that

‖H±(qeΛt)e−Λt‖L2(Q) ≤ C(T, L,Λ, ‖G‖L2(TL×TL), ‖A0
⊥‖L2(TL), ‖A1

⊥‖L2(Ω))

· (‖q−‖L2(Q) + ‖q+‖L2(Q)), (A.6)

where G ∈ W 1,∞(T2
L) is the Green function (or the fundamental solution) of the

one-dimensional Laplace operator with periodic boundary conditions. Hence, for all
T > 0, for all Λ > 0, f± ∈ L2(0, T ;V ′). Therefore using Theorem 4.1 of Chap. 3
and Theorem 3.1 of Chap. 1 in Ref. 52, we can show that the problem (A.2)–(A.3)
has a unique solution r± ∈ W(0, T ) ∩ C (0, T ;L2(D)). Let FΛ :L2(0, T ; L2(D)) →
W(0, T )∩C (0, T ; L2(D)) be the map defined by r = FΛ(q). Thus we can show that
FΛ is a contractive maps in L2(0, T ; L2(D)) for Λ large enough. Let qi ∈ L2(Q)
and ri = FΛ(qi) ∈ W(0, T ) ∩ C (0, T ; L2(D)) for i = 1, 2. We set q = q1 − q2 and
r = r1 − r2. Therefore for all w ∈ L2(0, T ;V ), we have

〈∂tr
± − ε∂2

xr
± + Λr±, w〉 = e−Λt〈H±(q1e

Λt) −H±(q2e
Λt), ∂xw〉. (A.7)

If we set w = r±, using the Young inequality xy ≤ εx2 + 1
4εy

2, Eq. (A.7) becomes

1
2
‖r±(t)‖2

L2(D) + Λ
∫ t

0

‖r±(τ)‖2
L2(D)dτ

≤ 1
4ε

∫ t

0

‖e−Λτ (H±(q1e
Λτ ) −H±(q2e

Λτ ))‖2
L2(D)dτ. (A.8)

Let us estimate the right-hand side Eq. (A.8). Using d’Alembert integral represen-
tation formula we obtain

‖|A⊥[q1e
Λt] − A⊥[q2e

Λt]|‖L2(TL)

≤ p1
L,1(t)

∫ t

0

{‖|A⊥[q1e
Λτ ] − A⊥[q2e

Λτ ]|‖L2(TL)‖ργ [q1e
Λτ ]‖L2(TL)

+ ‖|(ργ [q1e
Λτ ] − ργ [q2e

Λτ ])A⊥[q2e
Λτ ]|‖L1(TL)}dτ, (A.9)
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where p1
L,1(t) = 1

2�
2t
L �L1/2. Let us first estimate the term ργ [qie

Λτ ] in (A.9). Using
the change of variable w = pe−Λτ we obtain

‖ργ [qie
Λτ ]‖L2(TL) ≤ 2(‖q−i ‖L2(Q) + ‖q+i ‖L2(Q) + L1/2). (A.10)

Let us now estimate the second term of the right-hand side of (A.9). Using definition
(2.14) and obvious estimates we obtain

‖|(ργ [q1e
Λτ ] − ργ [q2e

Λτ ])A⊥[q2e
Λτ ]|‖L1(TL)

≤ 2‖|A⊥[q1e
Λt] − A⊥[q2e

Λt]|‖L2(TL)(‖q−1 ‖L∞(0,T ;L2(D)) + ‖q+1 ‖L∞(0,T ;L2(D))

+L1/2) + eΛτL1/2(‖q−1 − q−2 ‖L2(Q) + ‖q+1 − q+2 ‖L2(Q)). (A.11)

Substituting (A.10) and (A.11) into (A.9) and using a Gronwall lemma we obtain

‖|A⊥[q1e
Λt] − A⊥[q2e

Λt]|e−Λt‖L2(Ω)

≤
(
TL

2Λ

)1/2

p1
L,1(T )e4Tp1

L,1(T )(λ+L1/2)(‖q−1 − q−2 ‖L2(Q) + ‖q+1 − q+2 ‖L2(Q)),

(A.12)

where λ := ‖q−1 ‖L∞(0,T ;L2(D)) + ‖q+1 ‖L∞(0,T ;L2(D)). Therefore using (A.8), (A.12)
and by noting that

‖(H±(q1e
Λt) −H±(q2e

Λt))e−Λt‖L2(Q) ≤ ‖q‖L2(0,T ;L2(D))

+ ‖|A⊥[q1e
Λt] − A⊥[q2e

Λt]|e−Λt‖L2(Ω) + ‖φ[q2] − φ[q1]‖L2(Ω),

we obtain

‖r−‖L2(Q) + ‖r+‖L2(Q) ≤
CT (T, L, λ, ‖G‖L2(TL×TL))

(εΛ)1/2
(‖q−‖L2(Q) + ‖q+‖L2(Q)),

where

CT (T, L, λ, ‖G‖L2(TL×TL))

:= 1 + ‖G‖L2(TL×TL) +
(

TL
2Λ

)1/2

p1
L,1(T )e4Tp1

L,1(T )(λ+L1/2). (A.13)

Therefore for all final time T > 0, there exists ΛT ∈ R+ such that the map
FΛT :L2(0, T ; L2(D)) → L2(0, T ; L2(D)) is a contraction in L2(0, T ; L2(D)) and
has a unique fixed point q ∈ W(0, T ) ∩ C (0, T ; L2(D)) which satisfies the system
(A.1). Finally since p = q exp(Λt) ∈ W(0, T ) ∩ C (0, T ; L2(D)), Eqs. (3.1) and
(2.10)–(2.12) has a unique global strong solution. Obviously the solution satisfies
the regularity properties (3.5).
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Appendix B. Proof of Theorem 3.2

Let us define the cutoff function Θ(r) ∈ C∞
0 (R) such that Θ(r) = 1 if r ≤ R, and

Θ(r) = 0 if r ≥ R+ 1, with R := max{‖p−0 ‖L∞(D), ‖p+
0 ‖L∞(D)}+ T (‖∂xφ̃‖L∞(Ω) +

‖∂xÃ⊥‖L∞(Ω)), and where the tilde notation is explained below. We define H̃±(p) =
Θ(p±)H±(p). Using integral formulation of the waves Eq. (2.10) and Poisson equa-
tion (2.11), by a Gronwall lemma we can show that the maps p → H±(p) are
Lipschitz continuous from L∞(0, T ; L2(D)) into L∞(0, T ;L2(D)), i.e. there exists
a constant CT := CT (T, L, λ, ‖G‖L2(TL×TL)) where λ := λ(‖p−1 ‖L∞(0,T ;L2(D)),

‖p+
1 ‖L∞(0,T ;L2(D)), ‖p−2 ‖L∞(0,T ;L2(D)), ‖p+

2 ‖L∞(0,T ;L2(D))), and G ∈ W 1,∞(T2
L) is

the fundamental solution of the one-dimensional Laplace operator with periodic
boundary conditions, such that ‖H±(p1) − H±(p2)‖L∞(0,T ;L2(D)) ≤ CT ‖p1 −
p2‖L∞(0,T ;L2(D)), for all pi ∈ L∞(0, T ; L2(D)) with i = 1, 2. Since H± are
Lipschitz in p, we can easily proof that H̃± are also Lipschitz in p. Follow-
ing the proof of Theorem 3.1, we can show that there exists a unique solution
p̃± ∈ C (0, T ;L2(D)) ∩W(0, T ) to the problem

∂tp̃
± + ∂2

xH̃±(p̃) = ε∂2
xp̃

±, p̃±(t = 0) = p̃±
0 , (B.1)

∂2
t Ã⊥ − ∂2

xÃ⊥ = −Ã⊥ρ̃γ , Ã⊥(t = 0) = A0
⊥, ∂tÃ⊥(t = 0) = A1

⊥, (B.2)

Ẽx = −∂xφ̃, −∂2
xφ̃ = ρ̃− 1, ∂tẼx = −J̃x +

1
L

∫
TL

J̃x(t, x)dx. (B.3)

From d’Alembert integral representation formula we obtain

‖∂xÃ⊥‖L∞(Ω) ≤ ‖Ã0 ′
⊥ ‖L∞(TL) + ‖Ã1

⊥‖L∞(TL)

+
1
2

(
T

⌈
T

L

⌉)1/2

(‖p̃−‖L∞(0,T ;L2(D)) + ‖p̃+‖L∞(0,T ;L2(D))) (B.4)

and thus ∂xÃ⊥ ∈ L∞(Ω). Using equation

Ex(t, x) =
∫

TL

K(x, y)(ρ− 1)dy,

where K(x, y) = −∂xG(x, y) and from the Sobolev embedding H2(TL) ↪→
W 1,∞(TL) we get ∂xφ̃ ∈ L∞(Ω).

Let us now show that the solution {p̃±, φ̃, Ã⊥} of the system (B.1)–(B.3) is in
fact the solution of the problem (3.1) and (2.10)–(2.12). To this aim, we need to
verify that the solution {p̃±, φ̃, Ã⊥} satisfies the maximum principle (3.6), i.e.

‖p̃±(t)‖L∞(D) ≤ ‖p±0 ‖L∞(D)

+
∫ t

0

dτ{‖∂xφ̃(τ)‖L∞(TL) + ‖∂xÃ⊥(τ)‖L∞(TL)}, (B.5)
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so that Θ ≡ 1 and H̃±(p̃) = H±(p̃). Let us define

q± := p̃± − ‖p±0 ‖L∞(D) −
∫ t

0

dτ{‖∂xφ̃(τ)‖L∞(TL) + ‖∂xÃ⊥(τ)‖L∞(TL)}.

We have to show that q±+ = (q±)+ = max{q±, 0} = 0. Since |(x − x0)+| ≤ |x|,
for x0 ≥ 0, we have |q±+ | ≤ |p̃±|, so that q±+(t) ∈ L2(D) for all time t. Moreover,
p̃±(t) ∈ V for almost every time t and ∂xq

± = ∂xp̃
±, hence q±(t) ∈ V for almost

every time t. Consequently, since the function (·)+ is a Lipschitz continuous function
such that (·)′+ = sign(·), q±(t) ∈ V implies q±+(t) ∈ V by the chain rule formula.
Therefore, using (B.1) we obtain

∂tq
± + ‖∂xφ̃(t)‖L∞(TL) + ‖∂xÃ⊥(t)‖L∞(TL) − ε∂2

xq
± = ∂xH̃±(p̃).

Then for all ψ ∈ V we have

〈∂tq
±, ψ〉 + 〈‖∂xφ̃(t)‖L∞(TL) + ‖∂xÃ⊥(t)‖L∞(TL), ψ〉 + ε〈∂xq

±, ∂xψ〉

=
∫ 1

0

da

∫
TL

dxΘ′(p̃±)H̃±(p̃)∂xp̃
±ψ +

∫ 1

0

da

∫
TL

dxΘ(p̃±)∂xφ̃ψ

+
∫ 1

0

da

∫
TL

dxΘ(p̃±)

(
p̃±∂xp̃

±

γ±(p̃)
+

Ã⊥ · ∂xÃ⊥
γ±(p̃)

)
ψ. (B.6)

If we take ψ = q±+ in (B.6), and observe (thanks to the chain rule formula
∂zi(Ψ ◦ u) = (Ψ′ ◦ u)∂ziu, for i = 1, . . . , d, with Ψ ∈ W 1,∞(R) and u ∈ H1(Rd))
that q±+∂tq

±
+ = q±+∂tq

±, |∂xq
±
+ |2 = ∂xq

±∂xq
±
+ , q±+∂xq

±
+ = q±+∂xq

±, q±+(t = 0) = 0,
‖Θ‖L∞(R) ≤ 1, then using the Young inequality xy ≤ ε

2x
2 + 1

2εy
2, we get

1
2
‖q±+‖2

L2(D) ≤
1
2ε

∫ t

0

dτ

{
‖Θ′(p̃±)H̃±(p̃)q±+‖2

L2(D) +
∥∥∥∥Θ(p̃±)

p̃±

γ±(p̃)
q±+

∥∥∥∥2

L2(D)

}
.

(B.7)

Since there exists a numerical constant C such that ‖Θ′‖L∞(R) ≤ C, we deduce
from (B.7) that

‖q±+‖2
L2(D) ≤

1
2ε
{
1 + K‖Θ′‖2

L∞(R)

(
1 + R2 + ‖Ã⊥‖2

L∞(Ω)

+ ‖φ̃‖2
L∞(Ω)

)} ∫ t

0

dτ‖q±+‖2
L2(D), (B.8)

where K is a pure numerical constant. Using a Gronwall lemma we deduce from
(B.8) that q±+ = 0, since q±+(t = 0) = 0. Similarly we can prove that(

− p̃±(t) − ‖p±0 ‖L∞(D) −
∫ t

0

dτ
{
‖∂xφ̃(τ)‖L∞(TL) + ‖∂xÃ⊥(τ)‖L∞(TL)

})
+

= 0,
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and consequently (B.5) holds for almost every time t ∈ [0, T ]. Therefore H̃±(p̃) =
H±(p̃), and the solution {p̃±, φ̃, Ã⊥} of the problem (B.1)–(B.3) is in fact the
solution of the problem (3.1) and (2.10)–(2.12) such that p̃± ∈ C (0, T ;L2(D)) ∩
W(0, T )∩L∞(Q), φ̃ ∈ L∞(0, T ;W 1,∞(TL)), Ã⊥ ∈ L∞(0, T ; W1,∞(TL)) and satisfy
the maximum principle (B.5). Using d’Alembert integral representation formula,
and similar estimates as (B.4) we obtain that ∂tA⊥ ∈ L∞(Ω) which proves that
A⊥ ∈ W1,∞(Ω). Since H± ∈ L∞(Q), and using equation

∂tφ(t, x) =
∫

TL

dy∂yG(x, y)
∫ 1

0

da(H(t, y, p+) −H(t, y, p−)),

=
∫

TL

∂yG(x, y)Jx(t, y)dy,

we get ∂tφ ∈ L∞(Ω) which proves that φ ∈ W 1,∞(Ω). It remains to check the
uniqueness of the solution p±. Let p±i ∈ C (0, T ;L2(D)) ∩ W(0, T ) ∩ L∞(Q), φi ∈
W 1,∞(Ω), A⊥, i ∈ W1,∞(Ω) with i = 1, 2 two solutions of the problem (3.1) and
(2.10)–(2.12). If we truncate the Hamiltonian H defined in (2.13) outside the interval
Imax =

{
p ∈ R, |p| ≤ maxi∈{1,2} maxα∈{−,+} ‖pα

i ‖L∞(Q)

}
, we obtain a Lipschitz

function H in p and (p±i , φi,A⊥, i) with i = 1, 2 are two solutions of the problem
(B.1)–(B.3). Since the problem (B.1)–(B.3) has a unique solution (see Theorem 3.1),
we have (p±1 , φ1,A⊥, 1) = (p±2 , φ2,A⊥, 2) which ends the proof.
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