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In this paper we prove the existence and uniqueness of classical solution for a system of PDEs
recently developed in Refs. 60, 8, 10 and 11 to modelize the nonlinear gyrokinetic turbulence in
magnetized plasma. From the analytical and numerical point of view this model is very promising
because it allows to recover kinetic features (wave—particle interaction, Landau resonance) of the
dynamic flow with the complexity of a multi-fluid model. This model, called the gyro-water-bag
model, is derived from two-phase space variable reductions of the Vlasov equation through the
existence of two underlying invariants. The first one, the magnetic moment, is adiabatic and
the second, a geometric invariant named “water-bag”, is exact and is just the direct consequence
of the Liouville theorem.
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1. Introduction

It is generally recognized that the anomalous transport observed in nonuniform
magnetized plasmas is related to the existence of turbulent low-frequency electro-
magnetic fluctuations, i.e. with frequency much lower than the ion gyrofrequency.
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The presence of density, temperature and velocity gradients in the transverse
direction of the magnetic confinement field, generates micro-instabilities which give
rise to this turbulent transport. Low frequency ion-temperature-gradient-driven
instability is one of the most serious candidates to account for the anomalous

t,” as well as the so-called trapped electron modes.®? As the main energy loss

transpor
in a controlled fusion devices is of conductive nature, the energy confinement time is
of the same order as the diffusion time a?/y p where y p is the thermal diffusivity and
“a” the transverse plasma size. Therefore it is crucial to determine this transport
coefficient by computing the turbulent nonlinear diffusivities in fusion plasmas.
During recent years, ion turbulence in tokamaks has been intensively studied
both with fluid?®*™%® and gyrokinetic simulations using Particle-In-Cell (PIC)
codesi647:52:53:63:68 1 V]asov codes.20:23:27:43

As far as the turbulent diffusion is concerned, it is commonly observed?* that there
exists a factor 2 between kinetic and fluid simulations (Xguaq > 2Xkinetic)- Lherefore
the kinetic or fluid description may significantly impact the instability threshold as
well as the predicted turbulent transport. The reasons of this observation is not really
well understood: nonlinear Landau effects or nonlinear resonant wave—particle
interaction, damping of poloidal velocity fluctuations, and so on.

Consequently, it is important that gyrokinetic simulations measure the dis-
crepancy between the local distribution function and a Maxwellian one, which is the
main assumption of fluid closures.

In a recent paper Ref. 67 a comparison between fluid and kinetic approach has
been addressed by studying a three-dimensional kinetic interchange. A simple
driftkinetic model is described by a distribution depending only on two spatial
dimensions and parametrized by the energy. In that case it appears that the distri-
bution function is far from a Maxwellian and cannot be described by a small number
of moments. Wave—particle resonant processes certainly play an important role and
most of the closures that have been developed will be inefficient.

On the other hand, although more accurate, the kinetic description of turbulent
transport is much more demanding in computer resources than fluid simulations.
This motivated us to revisit an alternative approach based on the water-bag-like
weak solution of Vlasov-gyrokinetic equations.

The water-bag model was introduced initially by DePackh,?” Hohl, Feix and
Bertrand,”%*" next extended to a double water-bag by Berk and Roberts® and finally
generalized to the multiple water-bag by Finzi.*»* 731! The water-bag model was
shown to bring the bridge between fluid and kinetic description of a collisionless
plasma, allowing to keep the kinetic aspect of the problem (wave—particle inter-
action, Landau resonance) with the same complexity as a multi-fluid model. The aim
of this paper is to use the water-bag description for gyrokinetic modeling. In order to
understand the nature of the transport, the weak-turbulence theory of the gyro-
water-bag has been developed in Ref. 8 leading to nonlinear Fokker—Planck
equations for the bags (revealing the diffusive nature of the transport in the radial
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direction) coupled to a diffusion equation for the mean flow (zonal flow) which
constitutes the back reaction (inverse energy cascade) of turbulent diffusion (direct
energy cascade). Indeed there is an energy transfer from the turbulent low-frequency
electromagnetic (drift waves) fluctuations to these periodic zonal flow fluctuations
via either local or nonlocal interactions in Fourier space. The back reaction of self-
generated shear flow (such as both radially sheared parallel and poloidal flows), on
pressure-gradient-driven turbulence, is a key mechanism that governs the turbulent
state and the transport, especially it can lead to the formation of transport barriers
which participates to a better confinement of the plasma. Through a quasilinear
analysis it has been derived semi-analytical transport coefficients to predict the level
of the turbulence. In Ref. 10 another quasilinear model, well-suited for numerical
simulation of weak turbulence of magnetized plasma in a cylinder, is derived. This
quasilinear model is solved using a numerical approximation scheme based on
discontinuous Galerkin methods. Finally the full nonlinear gyro-water-bag model is
solved numerically in Ref. 9 by the means of Runge—Kutta semi-Lagrangian
methods. The comparison of numerical results between nonlinear and quasilinear
10 show that the quasilinear approach proves to be a good approximation
of the full nonlinear one as the quasilinear estimate of the turbulent transport is of the
same order as the nonlinear one. In order to show the relevance of the gyro-water-bag
model for describing plasma nonlinear gyrokinetic turbulence, we are now making
numerical comparisons between the nonlinear gyro-water-bag model (for which we
will prove well-posedness below) and the Vlasov-gyrokinetic equations thanks to the
GYSELA*? code developed at the CEA-Cadarache. After a brief introduction of the
well-known gyrokinetic equations hierarchy, we present the derivation of the gyro-
water-bag model. We next show the existence and uniqueness of classical solution of
the gyro-water-bag model.

simulations

2. The Gyro-Water-Bag Model
2.1. The gyrokinetic equation

Predicting turbulent transport in collisionless fusion plasmas requires to solve the
gyrokinetic equations for all species coupled to Darwin or Poisswell equations (low-
frequency approximations of Maxwell equations in the asymptotic limit of infinite
speed of light'!). This gyrokinetic approach has been widely used in recent years to
study low-frequency micro-instabilities in magnetically confined plasmas which are
known for exhibiting a wide range of spatial and temporal scales. Gyrokinetic
ordering employs the fact that the characteristic frequencies of the waves and
gyroradii are small compared with the gyrofrequencies and unperturbed scale
lengths, respectively, and that the perturbed parallel scale lengths are of the order of
the unperturbated scale length. Such an ordering enables one to be rid of the explicit
dependence on the phase angle of the Vlasov equation through gyrophase-averaging
while retaining the gyroradius effects to the arbitrary values of the gyroradius over
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the perturbated perpendicular scale length. The conventional approach®® to derive
the gyrokinetic Vlasov equation is based on a maximal multiple-scale-ordering
expansion involving a single ordering parameter, which consists in computing an
iterative solution of the gyroangle-averaged Vlasov equation perturbatively expan-
ded in powers of a dimensionless parameter p/L, where p is the Larmor radius and
L, the characteristic background magnetic-field or plasma density and temperature
nonuniformity length scale. A modern foundation of nonlinear gyrokinetic the-
ory'??%4 is based on a two-step Lie-transform approach. The first step consists in
the derivation of the guiding-center Hamilton equations, from the Hamiltonian
particle dynamics, through the elimination of the gyroangle associated with the
gyromotion time-scale of charged particles. If one takes into account finite gyroradius
effects, one needs to reintroduce the gyroangle dependence into the perturbated
guiding-center Hamiltonian dynamics which results that the magnetic moment  is
only conserved at first order in the dimensionless ordering parameter featuring
electrostatic perturbations. Therefore one needs to perform a second-order pertur-
bation analysis to derive the nonlinear gyrocenter dynamics. As a result, the second
step consists in deriving a new set of gyrocenter Hamiltonian equations from the
perturbated guiding-center equations, through a time-dependent gyrocenter phase-
space transformation and gyroangle elimination. Finally, a reduced variational
principle!®t?
netic Vlasov Maxwell equations. Within gyrokinetic Hamiltonian formalism, the
Vlasov equation expresses the fact that the ions gyrocenter distribution function
f=f(tr, v”,,u) is constant along gyrocenter characteristic curves in gyrocenter
phase-space (t,r, v, i):

enables to derive self-consistent expressions for the nonlinear gyroki-

Dif =0 f+X, -V f+X-Vf+ 00y f =0, (2.1)

with

XH = U\|b7 Xi = VE + VyB + Ve,

Vg = Bll* b x VJ,,
Vop = qz-/;f‘ b x VB,
v - mvj (beB_’_(VxB)L) _ mivﬁbXE’
4B; B B B~ R.
iy = — mi (b + ;:LgT b x %) (VB + ¢V T, 9),

miY| <

4q;



On the Cauchy Problem for the Gyro-Water-Bag Model 1843

where b = B/B denotes the unit vector along magnetic field line, 7, denotes the
gyroaverage operator, N/R, is the field line curvature, ¢; = Z;e, ¢ > 0 being the
electron Coulomb charge and u = m;v?/(2B) is the first adiabatic invariant of
the ion gyrocenter. If we now suppose k| p; small and neglecting all terms smaller
than O(k? p?), we then obtain the Poisson equation

—Z;gV | - < P VMZS) = AZDqu

Q

where p?= v, /Q? = kg T;/(m;Q?) is the ion Larmor radius, ’\%% =k Tieo/(Z2e*n;)
is the ion Debye length and J is the Bessel function of zero order. The left-hand side
of Eq. (2.2) corresponds to the difference between the gyroaveraged density % X
f dpdvJ, f and the laboratory ion density N; which is the lowest contribution to the
density fluctuations provided by the polarization drift. Firstly, we are interested in
the effects of the transversal drift velocity E x B coupled to the parallel dynamics
while the curvature effects are considered as a next stage of the study. As a result, in
the sequel we deal with a reduced driftkinetic model in cylindrical geometry by
making the following approximations.

e In addition of cylindrical geometry, we suppose that the magnetic field B is uni-
form and constant along the axis of the column (z-coordinate, B = Bb = Be,). It
follows the perpendicular drift velocity does not admit any magnetic curvature or
gradient effect and especially B* = B.

e Some finite Larmor radius effects are neglected. Namely we consider only one
adiabatic invariant p; = p?Q,¢;/2 and set J,, = 1 which means that the asymp-
totic k| p; — 0 is considered and thus the guiding center and the gyrocenter merge.

e We linearize the expression for the polarization density, n,,, in Eq. (2.2),

;

Mpol = VL : (BQU vl¢>7

by approximating n; to the background density of the Maxwellian distribution
function ny), and by assuming that the ion cyclotron frequency, €2, is a constant €2.
Moreover we assume that the ion Debye length Ap. is small compared to the ion
Larmor radius p;.

e The electron inertia is ignored, i.e. we choose an adiabatic response to the low
frequency fluctuations for the electrons. In other words the electron density follows
the Boltzmann distribution

ne =i exp( 0 A<¢>M)),

where (¢) 1, denotes the average of the electrical potential ¢ over a magnetic field
line. Moreover we assume that the electrical potential is small compared to the
electron kinetic energy ep/ (kg T,) ~ 5 < 1.
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Under these assumptions the evolution of the ion guiding-center distribution function
f=f(t,ry, 2 v)) obeys the driftkinetic Vlasov equation

Of +ve-Vif+y zf+ Eﬂavuf (2.3)

for the ions (¢;,M;), coupled to an adiabatic electron response via the quasi-neutrality
assumption

€T N,

_VJ_ (BQO VL¢> 70 (¢ )\ /f t r, 1}“ dUH — Nyo- (24)

Here ¢; = Zie, Zing = nyg, To = Toy, 7= Tio/ T, A € {0,1}, E = —V¢ and vy is the
E x B/B? drift velocity. The most important and interesting feature is that f
depends, through a differential operator, only on the velocity component vy parallel
to B. Let us note that rigorous mathematical justifications of Vlasov-gyrokinetic
models (with the full three-dimensional Poisson equation) in simplified geometry
(with no magnetic curvature neither magnetic gradient drift velocity) with various
time and space scales ordering have been performed recently in different configur-

ations (“transverse guiding center approximation”, “parallel approximation”, “finite
16,32—35,41,42,65,66

Larmor radius approximation”, “quasi-neutral limit”).

2.2. The gyro-water-bag model

Let us now turn back to the driftkinetic equation (2.3). Since the distribution f(¢,
r |, z, 1)) takes into account only one velocity component v a water-bag solution can
be considered.® Let us consider 2A/ non-closed contours in the (r, v”)—phase space
labeled v;” and v;” (where j = 1,..., ) such that --- < v <wj <---<0<--- <
vf < vfﬂ < --- and some strictly positive real numbers {Aj}je[L A1 that we call bag
heights. Since the bags Aj(vf —w; ), forj=1,... , NV, are exact geometric invariants,
which are reminiscent to the geometric Liouville invariant, we then define fgwb =
f(try,z,v)) as

N

f(t7 r,.z ’UH) = Aj[ ’U” - ’U (t r,.,z )) H(’U” — ’U (t r.,z ))], (25)

=1
where H is the Heaviside unit step function. The function (2.5) is an exact solution of
the driftkinetic Vlasov equation (2.3) in the sense of distribution theory if and only if
the set of following equations are satisfied:

atv + vg - VJ_U + via v %E”. (2.6)

T

The quasi-neutrality coupling can be rewritten as

v + T (6 A i A(v - (2.7)
L BQ() z() j=1 ] hio- .
Let us introduce for each bag j the density n; (v]+ —v; )A; and the average vel-

ocity u; = (vj + v;)/2. After a little algebra, Eq (2.6) leads to continuity and Euler
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equations namely

9yn;+ V- (njvg) + 9.(nju;) = 0, (2.8)

O(njuj) + V1 - (njuvg) + 0, <n]uj2 + &) = ﬂnjEH, (2.9)
m; m;
where the partial pressure takes the form p; = m; nf / (12A]2). The connection between
kinetic and fluid description clearly appears in the previous multi-fluid equations.
The case of one bag recovers a fluid description (with an exact adiabatic closure with
~v = 3) and the limit of an infinite number of bags provides a continuous distribution
function.

To complete the system (2.6)—(2.7) we need to supply an initial condition v;" (¢t =
0,r,,z) = fua;(rL7 z) for j € [1,N]. In fact, the problem of determinating the water-
bag parameters ({A;};en s {v9j}jepn) is not a trivial task. From a general fra-
mework point of view, we can minimize a distance, which has to be suitably defined,
between any given distribution function belonging to some functional spaces and the
water-bag distribution function (2.5) under some appropriate constraints (for
example, on the sign of the parameters {A;} je[1.,v) Which must lead to the definition of
a positive measure in velocity space). For example, we can decide to minimize the
distance between the moments of any given distribution function and the water-bag
decomposition (2.5). This kind of moment problem under constraints can be recast in
a general nonlinear optimization problem with constraints. As an example, to
determine physically relevant gyro-water-bag equilibrium to describe ion-tempera-
ture-gradient modes, we can choose to construct radial profiles in terms of tem-
perature and density profiles only. The continuous equilibrium distribution function
can be assumed as

~ ny(r) Y
Jr = Tiomf( Tiom)’ =

where n(r) and Tj(r) are normalized radial profiles of ion density and temperature,
and r = |r,|. We can suppose that the normalized function F is an even function,
which leads to consider symmetric profiles such that va; = Fwy;(rp). As an example
for a local Maxwellian distribution, we get F(z) = exp(—x2/2)/v/27. The first stage
can then consist in constructing the gyro-water-bag equilibrium function at
7= 7y € [Tmin, Tmax), While a second one can consist in extending it on the whole radial
domain [ryin, Tmax)- TO this aim, as in Refs. 60, 9, 21, we can use the method of
equivalence between the moments of the stepwise gyro-water-bag function (2.5) and
the corresponding continuous function (2.10). If for a given set of contours
{woj(10) }jep g With £=0,2,...,2(N — 1), we equalize M"(f,,), the f-moment in
velocity of f., and ME(fO 1), the f-moment in velocity of the gyro-water-bag func-

gwb
tion f{y, = fw(t = 0) (see definition (2.5)), at r = 7y, we obtain a N-dimensional

W

linear problem where the unknowns are the parameters {A;} jeq,n] and the matrix ya

of the linear problem is the Vandermonde-type matrix {E; = 2v§j_l(r0)}iﬁj€[lﬁj\/],
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while the right-hand side involves the moments M¢( foq)- At this point there are
several strategies to extend the contours {;} je[1.n) on the whole radial domain. One
strategy is to follow the level lines of the distribution function F, determinated by
the method of moments equivalence at r = r;, which leads to the definition
w;(r) = v/ Tio(r) F 1 (fin/ Tio(r) /mio (7)), with f; = fq (70, 005(r0))- IE mi9(r), Tio(r)
and F are enough regular, then it will be also the case for the initial contours
{v0j}jepia- A second strategy can consist in differentiating with respect to the radial
variable 7 the moments equivalence M( fé)wb) = M!(f,,) at 7 = rp, which leads to a
N -dimensional linear problem where the unknowns are now the radial derivatives of
the contours {9,v;(r)}jep. and the matrix of the linear problem is the Vander-
monde-type matrix {Efj = 2Ajv(2)](-ifl)(r0)}i,j€[1’ A7, while the right-hand side involves
now the known quantities (9, M*(f,q)) (7o), and {;(ry) }jep1 v By differentiating the
moments equivalence a second time with respect to radius r, we still obtain a
N -dimensional linear problem of matrix £+, where the unknowns are now the second-
order radial derivatives of the contours {07vy;(ry)}je(1.47, While the right-hand side
involves now the known quantities (95 M"(f.,))(ry) and {8}vy;(rp) }jepag With k < 2
and [ < 1. Following the same previous procedure we can obtain any high-order
radial derivatives of the contours {97"vy;(79) } ;e by solving N-dimensional linear
problems of matrix £%, where the right-hand side involves the radial derivatives
(OEM(£.))(ro) and {0 Lvy;(ro) }jepag with k < mand | < m — 1. Using the mth first
radial derivatives of the contours {v;(r9)};cnn at 7= 7y we can extrapolate the
values of {vy;(ry + 07)} e a at 7o + 67 by using a Taylor expansion. Finally, we can
repeat the whole previous process at the point r = r; 4+ 7. Knowing the values of the
contours and their radial derivatives at any order on a grid of the radial domain, i.e.
{8f%j(ﬁ)}je[l,N]Je[l,M]a with k < m, we can use an interpolation scheme of high
regularity (such that Hermite or B-splines interpolation) to construct initial contours
with the desired regularity.

Let us notice that after a finite time, Eq. (2.6) or the system (2.8)—(2.9) will
generate shocks, namely discontinuous gradients in z for v]i, n; and u;. Nevertheless
the concept of entropic solution is not well-suited here because the existence of an
entropy inequality means that a diffusion-like (or scattering-like) process in velocity
occurs on the right-hand side of the Vlasov equation. This observation has been
developed in the theory of kinetic formulation of scalar conservation laws. In fact it
was established in Refs. 13—15 and 38 that scalar conservation laws can be lifted as
linear hyperbolic equations by introducing an extra variable £ € R which can be
interpreted as a scalar momentum or velocity variable. The author of Ref. 15 pro-
posed a numerical scheme, known as the transport-collapse method to solve this
linear kinetic equation. In fact the solution of this numerical scheme can be seen as
the solution of a variant version of the linear Bhatnagar—Gross—Krook (BGK)
kinetic model. The authors of Refs. 14, 15 and 38 have proved, using BV estimates
and Kruzhkov-type analysis, that this numerical solution converges to the entropy
solution of scalar conservation laws. This result was also shown in Ref. 72 using
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averaging lemmas®?**?>!2 without bounded variation (BV) estimates. In Ref. 64 the
authors also consider the BGK-like approximation, and using again BV estimates,
they prove the convergence of the approximate solution to the right entropy solution
when the relaxation time (the inverse of the collisional frequency) tends to zero.
Right after, it was observed by the authors of Refs. 64 and 54 that, without any
approximations, entropy solutions of scalar conservation laws can be directly for-
mulated in kinetic style, known as kinetic formulation. Its generalization to systems
of conservation laws seems impossible except for very peculiar systems.'”>73
Actually velocity derivatives of non-negative bounded measure appear in the right-
hand side of these linear kinetic equations (free streaming terms), which is the sig-
nature of diffusion-like processes in velocity. In order that the water-bag model
should be equivalent to the Vlasov equation (without any diffusion-like term on the
right-hand side of the Vlasov equation) we must consider multivalued solution of the
water-bag model beyond the first singularity. The appearance of a singularity (dis-
continuous gradients in z due to the Burgers term) is linked to appearance of trapped
particles which is characterized by the formation of vortices and the development of
the filamentation process in the phase space. From the study of particles dynamic,*’
in a cylinder (the geometry for which the gyro-water-bag equations (2.6)—(2.7) are
valid) the particles are not trapped but only passing. However, this model is relevant
for studying gyrokinetic turbulence in magnetically confined thermonuclear fusion
plasmas, because, in cylindrical geometry, wave breaking or filamentation process are
not dominant mechanisms.

To the best of my knowledge, until now there is no analytical result concerning the
well-posedness of the Vlasov-gyrokinetic equations (2.3)—(2.4) because it is a hard
problem to deal with the strong coupling ¢ = n along the parallel direction (loss of
z-derivatives). It is still an open problem to prove the existence of classical and weak
solutions (even locally in time) for the system (2.3)—(2.4). Concerning weak sol-
utions, it seems that traditional techniques, for getting compactness of sequences of
approximated solutions, such as averaging lemmas or compensated compactness
tools, fail. Maybe the use of relative entropy method would allow to pass to the limit.
Therefore the present analytical result constitutes a first step to prove the existence
of weak solutions (at least for a special class) for the Vlasov-gyrokinetic equations
(2.3)—(2.4). Let us notice that from the physical point of view, any Lebesgue
integrable distribution function f, having a finite number of bounded moments, can
be approximated by a water-bag distribution function by equating their moments up
to a fixed order.”?"%? In order to recover some regularity in the parallel direction and
then prove the existence of global weak solutions an interesting idea might be to add
a diffusion (collision) term in the direction of parallel velocity on the right-hand side
of the Vlasov equation (2.3) such as Fokker—Planck-like collision operators. Another
way could be to consider a non-Boltzmannian electrons distribution function. In this
case the Debye length are comparable to the electrons Larmor radius so that we
cannot neglect the Laplacian operator in Eq. (2.2).
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3. Existence of Classical Solution for the Gyro-Water-Bag Model

In this section we want to study the existence and uniqueness of the system (2.6)—
(2.7). In general the density n;, and the temperature T}, appearing in Eq. (2.7) are
smooth given functions of the radius r. To simplify the proof and without loss of
generality we can suppose that the density n;, and the temperature T}, are uniform
and take A = 0 in Eq. (2.7). Therefore the dimensionless equations (2.6)—(2.7) read
in R3 as follows:

8tvf—Vic/)-Vva—l—vfazvji—&—aZ(b:O, vf(O,-):va_;-(-), i=1.... N, (3.1)

N
“Ap+o= Av] —vj) -1 (3.2)
j=1

In the transverse r,-direction the contours follow the dynamics of the inviscid
incompressible Euler equations written in vorticity formulation. In the longitudinal
z-direction the contours follow the dynamics of Burgers-type equations, where the
flux functions involve a nonlocal term only in the transverse direction which couples all
the equations. The loss of derivatives is in the z-direction while the gain is in the
r | -direction, which makes the problem quite challenging. In order to prove the exist-
ence and uniqueness of the gyro-water-bag system (3.1)—(3.2) we split the global
dynamic system into the transverse dynamic system and the longitudinal one. For each
system we then prove the existence and uniqueness of classical solutions and get a priori
estimates on this solution. The idea of the proof then consists to construct an
approximate solution sequence for the global dynamic system and, thanks to a priori
estimates on the transverse and longitudinal systems, show that there exists a unique
limit which satisfies the exact global dynamic system. The main difficulty of the proof
comes from the loss of z-derivatives on the electrical potential ¢ in Eq. (3.2) which leads
to a loss of regularity in the z-direction. To overcome this difficulty the trick is to recast
the longitudinal dynamic equations into a hyperbolic system of conservation laws.

3.1. The transverse dynamic system
In this section, we consider the initial value problem in R?,
8tvf —Vi¢- VLv]i =0, v]i(O, )= vé(-), j=1,...,/N,
N (3.3)

J=1
Therefore we have the following existence theorem.

Theorem 3.1. (Local classical solution) Assume vy; € H*(R?) with s > n/2+1,
n = 3. Then for all N there exists a time T > 0 that depends only on ||1)3§-||Hs, N and
A = max;<y|A;|, such that Eq. (3.3) have a unique solution

vy € L>(0, T; H4(R®)) NLip(0, T; HH(R?), j=1,...,N.
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Proof. The proof is based on the Banach’s fixed-point theorem. We first rewrite the
system (3.3). Using the Green function G(z,,y,) = Ky(Jz, — y.|)/(27) where K is
the modified Bessel function of the second kind of order zero, i.e. the fundamental
solution of the differential operator (1 — A) in R2, we can reconsider the problem
(3.3) as

azvji + U[{in}jg/\/] 'VL'Uji =0,

where

AK % (vf (t,2) — vy (t,2).  (34)

7

M=

ul{vFhen](t2) = (K % Ay - V)(t,2) =

<.
[

In expression (3.4) we have used the notations of Sec. 3.2 and we define K(z,,y,) =
K|z, —y.]) = —ViG(ﬂl» y1) = Ki(lzp —y ) (2 — yo) /(272 — yo]), where K
is the modified Bessel function of second kind of order one. Let us note that K;(| - |) €
L'(R?) for i = 1,2. We now define the set Wy as

W = {wji € L(0, T; H*(R®)) N Lip(0, T; H-Y(R%)), j=1,...,. N |

o= o an

) +[[wy ()

sup [[{wj(t,)}jen

te(0, 7]
Hﬁ}a

with L > 1 a numerical constant. We then define the iteration map F as follows.
For any sequence {wj };<\r € Wr the image F({wj },<y) is the unique solution
{vi }jen of

5(R3)

< Kl{vaj}sen]

dyoi + u[{w; }jen] - Vovj =0, (3.5)

with voij as initial condition. We first show that 7 maps Wy onto itself for T' small
enough. If we apply the operator 9% to (3.5) for |a| < s and take the L2-scalar
product with 8“1}} then we get

1d
5 dt||a“ ||%2(R3>+/Rgaa(u[{wf}j§m~vwf)a%}dx:o. (3.6)

Let us estimate the second term of (3.6). For ¢ = 1,2, using Leibniz rules, we have

/ 0 (w[{w; }j<n]0;v,)0%0; dx
R3
aa iz ( )8/’ [{w; }jen]0 20,05 da. (3.7

The sum in (3.7) is made over all the terms with 8 = {3;}?_,, such that 0 < §; < o;
and the combination ( %) are positive constant. Distinguishing the case 5 = 0 from
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others, equality (3.7) becomes for i = 1,2,

1{a
aa(uﬁivf)(?“v]idarz B <0>/ uia,-(a%dex
R3

+ / a%jﬂz< )aﬂ—vmuiaa—ﬂaiv;ﬂdx, (3.8)
R3

«
6>0 /6

with ~ such that |y| = 1. Using integration by parts the first term of the right-hand
side of (3.8) can be estimated as

1/«

2\0
Using the Cauchy—Schwarz inequality and the interpolation inequality (see
Proposition 3.6, Chap. 13 of Ref. 70)

R3

2
< Cla)|lullwis@s 1v] || o) -

/ w0,(0%v; ) dw
R3

10777070 P09\l 12wy < C(8)([|07fl b (re |l 9]

w3y + 1 fllas@s) 10:9] L~ r3)),

the second term of the right-hand side of (3.8) can be estimated as

/ 9o0ES (;) 99107 4,0 0,0
R3

£>0

dx

< O(S)HUjiH%I-e(RS)||aiUi||Loc(R3) + ||7)ji||Hs(R3)||az'vji||Loc(R3)||Ui||Hs(R3)

< C()lvj ooy il

Ho(R); (3.9)

where we have used the Sobolev imbedding H*(R?3) — W1><(R3) for s > n/2+1,
with n = 3. Gathering (3.6)—(3.9) we get

Hy(R?) < C(S)vaﬂ

d
a”%ﬂ o) (L smsy + w2l s rs)),

j=1,...,N. (3.10)

Let us now estimate the term | u;]

Hs(R3)- For ¢ = 1,2 we get

2

s [{wi ien] ey = D

la|<s

N
Ko 0" > Ay(w) — w))
j=1

L2(R3)
N
A2IIK |2 12 -2
l z||L1(R2) Z(Hw] ”HO(R3) + ||w; ”H“(HW))
i=1 |a|<s

IN

N
< A2||Ki||2Ll(R2) Z (Hw;H%ﬁ(Ri*) + ||wj_||%{5(R3))
=1

< A2||Ki||il(R2)”{wji}j§N|

<.

T (3.11)
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Plugging (3.11) into (3.10), and summing over j in (3.10) we finally obtain the
differential inequality

%”{Uji(t)}jg/ﬂ e < C(s, A, K| pee)) I{w; ()} jen e 10 ()} <]

A Gronwall lemma then shows that ||{v;(t)}cnllm: < K[{v5;}j<nllm: for all
t€[0,T], T small enough. From (3.5) we have vj € Lip(0, T; H*"'(R?)) for
1 < j < N. We then conclude that the application F maps Wy into itself. We now

need to prove that F is a contraction. We consider two set of functions {w;[’l}jg N

and {w;c’Q}jsN belonging to Wp. We set {U;t’l}js/\/ = f({wf’l}jgjv),
+2 __ +2 _El 2 I 42

{v; " ew = F{w; " }en)s Vi = v;" —wv;” and wj = w; —w; " for all 1<

j <N and u = u' — u?. The difference of Eq. (3.5) for {v]il} and {vji’Z} gives

B g (3.12)

Oy +u Vv +ut Vv =0, vf(t=0)=0. (3.13)
In the same manner we obtained (3.6), we deduce from (3.13)

1d
W 0%l 2 + [ O0%(u- Vlvf’l)ﬁ"vfdaﬂr 0%(u? -V v;)0%; dz = 0.
R3 R3

(3.14)
Using the estimates of Proposition 3.7, Chap. 13 of Ref. 70 the second term of the
left-hand side of (3.14) for |a] < s—1 is bounded as follows:

y 0%(u - Vij[’l)(?“vfdm

< ||a(y”gi||L2(R3)||aa(U : VL”?’I)HU(RS)
< C)IvF 1oy (lull sy 05
< C(s, A, K| pr o)) llv;|

41
Hs(R3) T ||U| HS*I(]R(?)”'U]' HWI.OO(]RS))

+1
Hs—l(RB)HUj Hs(9)||{wji}jg/\/| Hs-1-

For the second term of the left-hand side of (3.14) we proceed similarly to (3.9).
Using the fact that V, - u? = 0 and provided that s > 5/2 we get

=2 (0)

Y (O‘)aﬂvaw L09IY v
R3 >0 ﬂ

0%(u? -V, 0j)0; da
R3

/ u? - Vl(é)”vji)Zda:
R3

+ dx

< C)[05 | e llu?]

H3(R3)
< O(s, 4, ||K||L1<R2))||Uji||?{s—l(RS)”{w]‘i’Q}jgN\ He-
Since ||{Uf’1(t)}jgN||Hm7 ||{wf2(t)}jg/v||Hm < K|l{vg;}jen g, we finally obtain
d
EH{”;E(t)}jgNHHH < O(s, A K, K| @2y 1{va5}enrllmm)

(v O Yjenllis + [{wi () enlmn)-
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Once again, a Gronwall lemma shows that F is a contraction provided that T is
small enough. O

Remark 3.1. We can also prove the global existence of regular solution of the
system (3.3), but it is not necessary for the further proof of regular solution for the
gyro-water-bag model. The crucial ingredient for proving the global existence and
uniqueness of classical (and weak) solution for the system (3.3) is the log-Lipschitz
(or quasi-Lipschitz) estimates on the kernel K which can be effectively proved by
using the properties of the modified Bessel function. Due to the log-Lipschitz
condition on the kernel K, we can then adapt the method developed for inviscid
incompressible Euler equations®®*®1°" by using the Lagrangian representation of the
contours which remain constant along the incompressible Lagrangian flow defining a
volume preserving map.

3.2. The longitudinal dynamic system
In this section, we consider the initial value problem in R3,
8tv]i + vjiazvji + 0,6 =0, vf[(O7 ) = ’03?(')’ j=1,...,N,
(3.15)

N
j=1
Therefore we have the existence theorem.

Theorem 3.2. (Local classical solution) Assume vg; € H*(R®) with m > n/2 + 1,
n =3 and A; strictly positive real numbers, 1 < j < N. Then for all N there exists a
time T >0 that depends only on ||vi|lgs@s), N, and A = max;cy |4, such that
Egq. (3.15) has a unique solution

vy € L>(0, T; H*(R?)) NLip(0, T; HH(R?), j=1,...,N.

Proof. If we set V = (v],..., v}, v1,...,vy)T the system of equations (3.15) can
be recast in the quasilinear system

9,V +Op(B(V(t,2),£))V =0, (3.16)
where the pseudo-differential operator Op(q¢(t, z,£)) of symbol ¢(t, z,&) = B(V (¢, z),
€) is defined by

Op(a(t. 2,00 = [ alt,, 7 v explin- e
R3
for every smooth function v, with F1 the Fourier transform of ¢. The symbol
q(t, z, &) is defined as
q(tv z, 5) = QI(tv z, 5) + qZ(ta z, 5) = igz(ql(tv z, f) + QQ(tv z, 6))7
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where
_ . _ 1A}
(h(ta Z, f) - dlag( V<t7 .’L‘)), and QQ(t, xvﬁ) :4#23
1+ (&, |
with
A= (A, ..., AT, Ay =AY -ADT, and 1=(1,...,1)".
e e’
2N times

Let us first show that the matrix-symbol ¢ has 2N distinct purely imaginary
eigenvalues. To this purpose it is equivalent to show that the matrix-symbol ¢ has 2\
distinct real eigenvalues. Let A be a number; then after some rearrangement of the
line of ¢ — AZ, the latter matrix take the form

v — A —vy + A
. 0
vy — A —vg + A
v — A —vy + A
0 .
Vpog — A v+ A
-Al Aj\/’ ~A1 Aj\/,l _ .AN
S 5. — S 5, Uy —A————
1+ 1€, 1+[&4] 1+ [&4] 1+ (&, 1+ [&4]
(3.17)
If we take the determinant of (3.17) we get the polynomial of degree 2\
N N 2)-1
B my(L+ 1€, 1)
Py (N) = H (v; = N)(v; =) (1 — Z oF N0 =N )" (3.18)
j=1 j=1 J J
where n; = Aj(vf —v;7) >0, A;>0 and ---<w; <--<wy <vf <-o- <
v < ---. We then observe that

positive if N even,

ign(Popr(0)) =
sign(Pay (0) {negative if N odd

and
(—=1)7  if A odd,

: i=1,...,N.
(—1)7t1 if AV even, J

sgmawwfnz{

Consequently the polynomial P,y oscillates 2N — 2 times around zero and has
2N =2 roots, N'—1 positive {A]}i<jep—1, and N =1 negative {\j }1<jon—1-
Therefore we can factorize Py as follows:

Pon(N) = Qon—2 (M) S2(N),
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with Qopr—o(N) = [T (A= AD)(A = A7) and Sy(A) = A2+ aX + b. If NV is even
then Poyr(0) > 0 and @Qyp_2(0) < 0. Therefore Sy(0) < 0 and Sy(A) has two distinct
real roots of opposite sign. If A is now odd then P, (0) <0 and Qyy_5(0) > 0.
Therefore 9,(0) < 0 and S,(\) has again two distinct real roots of opposite sign.
Finally we conclude that Py-(A\) has 2N distinct real roots, A/ positive and A
negative. Since Py (A) ~ A* > 0 when A ~ £oo and as Pyyr(vy) <0 when A is
even or odd therefore we have :I:vj\tf < :I:)\/j\[/ < 00. Therefore the 2A — 2 other
eigenvalues are such that :I:v]i < :l:)\ji < :tvﬁl. Therefore the matrix-symbol ¢ is
diagonalizable and has distinct purely imaginary eigenvalues i\, (V,€), smooth in V
and ¢ such that A\ (V,&) <--- < N(V,§) <+ < Apr(V,€). Therefore the system
(3.15) is strictly hyperbolic. Instead of building a symbolic symmetrizer by spectral
projections onto the A, (V, £)-eigenspaces of B (see Refs. 49, 51 and 69—71) thanks
to the Dunford formula (a Cauchy integral formula-type®’) and spectral separation
(cf. Theorem 6, Chap. 17 of Ref. 50), we can directly construct the symbolic
symmetrizer by finding an entropy of the transverse system. We will see below that
the energy will supply a convex entropy. If we set
A; 3 3 TL3
6]:?](1};_ 7’0.]‘_) J } 12A

and use Egs. (2.8)—(2.9) without the transverse terms, we obtain for all j € [1, V]

0. Z) 4o, u D+ n3 + nyud,p =0 3.19

Summing over all the bags, and using the continuity equation we obtain from

Eq. (3.19)
8<Z >+8 (Z“J2 J12A>

=
N

= —8Z¢Z nju; = 0, <¢Z n]-u]) + ¢atz n;. (3.20)
j=1 j=1 j=1

Using the quasi-neutrality equation (3.2) and integration by parts, the second term
of the right-hand side of Eq. (3.20) becomes

N
1
/ d$¢¢atz n; = §at/ dz, (|V L% +19]%),
R2 = R2

with ¢ = G * Z?il n;. Therefore the longitudinal system conserved the total energy

1 N
5/ de| > e+ Vool + 0] | (3.21)

R3 j=1

If we now drop the term corresponding to the transverse gradient of the electric
potential in the energy density (the integrand of (3.21)), which means that we
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remove the polarization term (the transverse Laplacian operator) in the quasi-
neutrality equation, we obtain the entropy

1 (N 2N .
U(V)2<Zlnj> +;5,

and its Hessian

(V) = DAL D(V) + Ay AL, (322)
where D(V) = diag(V(t,z)) and D(Ay) = diag(Ay). Using (3.22) we define
Ay Ay

L+ €L
We obviously observe that S is a Hermitian matrix and that Sgq is a skew-Hermitian
matrix. Moreover the operator Op(S) is Hermitian, i.e. Op(S) = Op(S)*, since it is
easily verified by a direct check that Op(S;) = Op(S;)* for i=1,2. Therefore
the operator Op(S) will be a good candidate for the symmetrizer. Let us note that
S, € €189 N HsSY as long as V € €' N H*. Let us now obtain a priori estimates.
We now set

Q= Op(S) + kAL, (3.23)

with the definition A® = (1 — A)*2 and where (-)* denotes the transconjugate of a
matrix or the dual of an operator. The constant x > 0 is chosen such that @ is a
positive definite operator on L?; hence invertible, since for Hermitian operator the
origin is an isolated point of the spectrum of finite multiplicity.’! In other words, it
means that there exists a constant ¢y > 0 such that (Qu,v) > C()”T/J”%z(Rg) where
(-,-) stands for the L2-Hermitian scalar product. Let us notice that [|A® - ||1. defines
a norm which is equivalent to the H*norm. We aim to estimate [[A® V|| 2(gs). Let
us note first that

0 QAN V AV) = (0;QA° VA V) + 2Re(QO: AV, A° V). (3.24)
Let us first estimate the first term of the right-hand side of (3.24):
(0;QA°V,A°V) < |(Op(0;:S)A*V,A° V)|
10P(9:S)A* V| 2 [|A° V|2 (ro)
c(|o; v
cllv

IN N

w®)IA° V] T
w1 &) 1A V|72 (3.25)

IN

Using Eq. (3.16), we get the following decomposition for the second term of the
right-hand side of (3.24):

Q9,A°V

—QA*Op(q)V
—QOp(¢)A°V + Q[Op(q), A*] V. (3.26)
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Let us first estimate the commutator [Op(g), A®] in the second term of the right-
hand side of (3.26). Since the commutator can be decomposed as [Op(q),A®] =
[Op(a1), A*]+[Op(g2), A*] and [Op(gy), A = [LALI.A1? A] =0 where A] =
(1—-A,)*? with s€R, then it remains to estimate [Op(q),A®]. Since the
differential operator A® € Op Sy, and the symbol S, € ¢S4 HSY,
Kato—Ponce estimate 3.6.1, Chap. 3 of Ref. 71 or its generahzatlon (for pseudo-
differential operator with symbol in €185 N H*SY) given by the Proposition 4.1.F,
Chap. 4 of Ref. 71, we have the estimate

11Op(q), ATl| 2 s

using the

< O( @0 Vipemsy + 1Plleip@a 10, Vg1 (ws))- (3.27)
Moreover we claim that we have
QU 2@®s) < CUIVIgms)lIYl2msy < cill¥llzems)- (3.28)

Indeed, using the decomposition (3.23) we get

| QYllz2ms) < [I0P(S)Yllp2@s) + (KA1 L2(mes)
< O ViIlg@s) 1Vl z2@s) + CllYl 2ms)
<C(|v

e®) 1Yl 22®3),
which proves estimate (3.28). Now using estimate (3.27) and (3.28) we obtain
(Q[Op(q), A°1V,A*V) < [|Q[Op(q), A*] V| 2(rs) |A° V| 2(rs)

< C(| VIgms)IIOP(@), A°1 V| p2ms)IA° V| g2 (rsy
<c(v wR%))HA VllL2(rs)
@) 10, Vg @) | ViLpms) b
< (||V (51(R3))”V”H~*(R3)- (3.29)

Let us now estimate the first term of the right-hand side of (3.26). We first observe that
(QOp(g)A*V,A*V)=(Op(S)Op(q)A*V,A* V) + (kA *Op(q)A*V,A*V).  (3.30)
The second term of the right-hand side of (3.30) can be bounded as
(kATTOP(@)AV, A V) < CIATOP(@)A V] Zaqen A VI Zo(rs)
ClOP(@A* V| 51 IA° VI o@s)
< OV lle@s) 1 VI es)- (3.31)

To get a bound on the first term of the right-hand side of (3.30), we can proceed as
follows. After a little algebra, we have

2
Op( Z 5)0p(g))

=D<A#> (V)20. + Ay ALD(V)AL*0, + Ay ALA P D(V)D.,  (3.32)

VANVAN
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while

2
Op(Sq) = Op(Z Siqj> = D(A4)D(V)?0, + 2A,ALD(V)AT?0,

ij=1

= Op(5)0p(g) = R, (3.33)
where the differential operator R and its dual are given by
R =AALAT2, D(V)]9, and R* =R+ A ALAT? DD, V)] (3.34)
A direct computation of the dual operator of Op(Sq) gives
Op(S4)* = Op((S9)*) — 2(R + D(A,)D(V)D(0, V) + Ay ALA DD, V). (3.35)
Now using (3.32)—(3.35), and the fact that Sq is skew-Hermitian, we get

2Re(Op(S)Op(q)A°V,A°V)
= ((Op(Sq) + Op(S)*)A*V,A*V) + (R+R*)A*V,A*V)
= —((2D(A4)D(V)D(3.V) + 2A,ALA DD, V)
+ AL ALD(D, V), AT DAV, A V). (3.36)

From (3.36) we get

2Re(Op(S)Op(g)A*V, A*V) < C(IVlgr@s)) IV | 7o) - (3.37)

Using expressions (3.24), (3.26) and (3.30) and gathering estimates (3.25), (3.29), (3.31)
and (3.37) we finally obtain

d

G (QATV,ATY) < oIVl @) IV I Fr-ray- (3.38)

Therefore integrating the differential inequality (3.38) between time zero and ¢, using
the property (Qu,v) > ¢l %2(R3) and estimate (3.28), a Gronwall lemma and
Eq. (3.16) conclude that we have

V € L(0, T; H*(R®)) N Lip(0, T; H*"L(R3)). (3.39)

The estimate (3.39) can just give a weak convergence of the solution sequence of a
regularization of Eq. (3.16) since compact Sobolev embeddings failed in the whole space.
Therefore we will obtain strong convergence of solution sequence in L>(0, T; L?(R3))
by proving that this sequence is a Cauchy sequence. Let us now consider the sequence of
following regularized problem:

QUVH)O, VI + Q(VFOp(B(VF,&)) VI, VMt =0) = ps, * Vo,  (3.40)
where the mollifier ps = p(z/6)/6% (0 < § < 1, [ pdz = 1) has the following property:

10sps * 1|

Hs(R3) < cors 1 ||1/1|

H7(R3) VT’, S. (341)



1858 N. Besse

Following the proof of the estimate (3.39) we find that
Ve L%, T; H*(R®)) NLip(0, T; H*\(R%)). (3.42)
Therefore there exists a subsequence still noted {V*} such that
VE—~V weaklyin L0, T; H*(R®)) N Lip(0, T; H*"1(R?)).
By subtraction of Eq. (3.40) we obtain
QMO (VI = VF) + Q(VF)Op(B(VE, ) (V! — V)
= F(VF, V1)
= —[QV*) — Q(V*h)]o,V* (3.43)
— [QVMOp(B(VH,€)) = QVF1)Op(B(V 1, )] VF,
(VL — VF)(t=0) = (ps,., — ps,) * Vo
Multiplying Eq. (3.43) by (V*1 — V*) and integrating on the whole space, using

estimate (3.42), following the energy estimate procedure leading to (3.39) and observing
the fact that

(F(VE(), VEL(D), VEF(E) — V(1))
< O VHIp(o, 7o)y | VEllLip(o, Ty -1 (my))
VL) = VE@O) 2@ | VEE) = VEHE) || n2ra),
we obtain for T small enough the estimate
[V — V| 10, 1:02R))
< C||(P(Sk+1 - P&k) * V0HL2(R3)) + CTH V- Vk_l”L"C(OA,T;L?(JRﬂ)-
Using (3.41) we obtain
e = 1(ps,,, — ps,) * Vollremsy < C63 6r1 — 64/l Vollars(rs)-

and it results that any good choice of §;, (for example, §;, = 1/k) makes the series > . €,
convergent. Consequently if 7" is small enough there exists a constant C' < 1 such that

[ VA — VE| o rr2®ey < CINVE = VE 1w, m12m3)) + €8s

which proves that || V#+1 — V’“|\Lx(O7T;Lz(R3)) is bounded for any k. Therefore we obtain

p
VP — VY| oo, 7:02(m3y) < Z [VF = V* o r.r2®e) < Clp— dl,

k=q+1

which proves that the sequence {V *} is a Cauchy sequence which has a strong limit point
in L>(0, T; L?(R?)). Since V*(t,-) isbounded in H * and strongly converge in L? toward
V(t,-) we have in fact V € L>(0, T; H*(R?)). Indeed following classical argument
there exists a subsequence still noted {V*(t,-)} weakly convergent in H* toward
V(t,) € H*(R?). As thelimit in D’ is unique we have V = V. From Eq. (3.40) we have
also V € Lip(0, T; H*"1(R3)). Since V¥ — V strongly in L>(0, T; L?(R?)), we also
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have Q(VF*) — Q(V)and B(V* &) — B(V, &) strongly in L>(0, T; L>(R?)). As VF —
V weakly in L>(0, T; H*(R?)) we have

QVF)Op(B(VF,§)) Vi — Q(V)Op(B(V,¢))V
weakly-x in L>(0, T; L>(R?)).
As 0, V1 — 9,V weakly-* in L>°(0, T; L>(R?)) we have
QVMo, VL — Q(V)d,V, weakly-* in L*(0, T; L>*°(R?3)),
which means that the limit point V satisfies Eq. (3.15). O

3.3. The gyro-water-bag model

In this section, we consider the initial value problem in R3,

8tv]ifVi¢-Vva+vf82v]i+8Z¢:O, v]i(O,'):v(j);(), j=1,...,/N,

N
—Ap+d=> Av —v;) -1 (3.44)

Therefore we have the existence theorem.

Theorem 3.3. (Local classical solution) Assume vg; € H¥(R?) with s> n/2+1,
n =3 and A; strictly positive real numbers, 1 < j < N. Then for all N there exists a
time T >0 that depends only on |vgllgsmrs), N, A= maxjcy|A;l, such that
Eq. (3.44) has a unique solution

vF € L0, T; HY(R®)) N Lip(0, T; H*-(R®)) N €(0, T; H'(R?)), j=1,...,N.

Proof. The idea of the proof is to construct an approximate solution sequence of
the problem (3.44) by splitting the global evolution operator S associated to the
transport equation (3.44) into the longitudinal evolution operator S, associated to
the transport equation (3.15) and the transversal evolution operator Sy associated to
the transport equation (3.3). If we set At= T/N, and t" = nAt, then our
construction can be summarized as

Vi (8741) = S(¢7, 4" ) V(¢ ( ")
o
= ST(t” "V, (t” b, (3.45)

where V,,1(t) (respectively V,,;(#)) is the solution of Eq. (3.3) (respectively (3.15))
in the time interval [t",¢"*!] with the initial condition V,.,(t")= V. (¢"")
(respectively, V,,1(t") = V,(t")). Thus for t < T we define

N-1 N-1

V )X n41(t), 17 (1) = ‘7n+l(t)Xn+l(t)7
n=0 n=0
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with the function X, (¢) equal to one on |t", t"*!] and zero elsewhere. From Sec. 3.1
(respectively, Sec. 3.2) we know that for At small enough there exists a unique
regular solution V() (respectively, V,.(¢)) on the interval [¢t", t"*!] launched by

the initial condition V. {(¢"1) (respectively, V,(¢")). On the one hand using (3.38)
we have

QA VY (), A TN (171)) < (QA TN (47), A5 TN (47))
tntl

+ [ oV

tn

SN
%”I(R3))||V (ﬂ”%}s(RS)df (3.46)

On the other hand, applying the operator @ to Eq. (3.3), recasted as a system, and
following energy estimate procedure leading to the differential inequality (3.12) we
obtain

<QA5 ?N(tnﬁ-l), AS ?N(tn—o—l»

< (QA® I7N(t"+1),/\s f/N(thrl))
¢ntl
~N SN =N
+ UV Ollerw 1V (Oller@)I V(O is@sydr. (3.47)
tn
Let us set
~N SN
ON () = IV (D)l 7rersy + 1V (Dl irero).»
and

TV (8) = (QA TN (1), A VN (1)) + (QA TV (1), AT (1),

If we combine both estimates (3.46) and (3.47) and sum over n we obtain

T ~ ~
I (") SHN(t°)+/0 CUV" (g, [V ()l ) (O (1) ¥2dt. (3.48)

Using inequality (3.48), and the following estimate:
collvllremsy < QYY) < erl|Yll 2rsy,

a Gronwall lemma implies that there exists a time T' > 0 such that the sequences { I7N}
and {I7N} have a weak limit point VT in the space L>(0, T; H*(R?)) N Lip(0, T}
H*"1(R?)). The estimate (3.48) can just give a weak convergence of the solution
sequences {I7N} and {I7N} since compact Sobolev embeddings failed in the whole
space. Let 2 be a compact subset of R with smooth boundary. As 9, 7" and 0y v
remain in a bounded set of L>(0, T'; H*~1(IR3)), then for ¢, ¢ > 0, and for all N we get

()]
Using the interpolation inequality

@) < CIFl ) 1510,

17 @ - v

g < Cle—t| and [V () = V() gy < Ot —t].
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with o€ (0,1) and v=0s+ (1 —0)(s—1), and since vY and V" belongs to
L>(0, T; H*(Q)) N Lip(0, T; H*~1(Q)), then the sequences {I7N} and {T7N} are
bounded in €°(0, T; H(2)). As the embedding H*™(Q) — H*(Q) is compact, with
€ >0, then by Ascoli theorem the sequences {VN} and {YN/N} are compact in
€(0, T; H*~1(Q)). Then we can extract from sequences {I7N} and {I7N} subsequences
still denoted by {I7N} and {VN} such that

vV S vt i g0, T; HLH(Q)),

vV SV oin (0, T; HH(Q)).

Let {Q;} be a countable increasing sequence of compact subsets of R?, with smooth
boundary which cover R3. Then for each k successively, using the previous compactness

result, we can extract from sequences { I7N(k>} and { I7N(k>}, subsequences which
converge in ¢ (0, T; H*~1(€},)). Therefore using the diagonal extraction procedure, we
obtain subsequences, still denoted by { VN} and { VN} such that

VY S v i €0, T HEN(RD)), (3.49)
vV S v in 90, T HEL(R?)). (3.50)

Next we can check that VT, Ve €(0, T; H*~'(R?)). Given any bounded subset
QeR3 and any te€[0,T], it follows from vY, vV e % (0, T; H*"1(R?)), that
I I//\N(t)| H1() and || I7N(t) || -1 () are bounded independently of N and from (3.49)—
(3.50), we get that || VT (¢)|| go-1(q) and || VF(#)|| -1 (o) are bounded. Since this is true for
any () we obtain V', V¥ € €(0, T; H*1(R?)).

Let us now show that VT = V#:= V. For each N we consider the increasing
sequence t" = nT/N. Therefore for each ¢ € [0, T] we can extract a subsequence ¢™)
such that ¢") — t when N — +oco. Consequently, we obtain in L

Vi) = Jim V() = dim V) (670)

N-too N-otoo
= Jim (S(t"™) — T/N,t"M) = )V (4" M) + Jim V) (£70)
= Vo () = Jim V(0200) = Vi)
and
Vi(t) :NEIEOOVN(t"(M) = hm Vo) (7))
- liTm(SE(t”<N) B T/N,t" ) = DV 0 (9071

n(N)-1
+N1—I>IEOQV( )= l(t )

= lim lt”‘zlmAt"— = t),
lim Vo1 (1) = Tim V(™) = 7/N) = v

N—+o00 N——+o0

which proves that VT = Vi = V. We are now able to show that the limit point V
satisfies Eq. (3.44). To this purpose we introduce the characteristic curves X ¥ (¢)
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associated to the transport equation (3.3)

%Xl (17 2) = (KA, - VY)Y XV(0),2), e[ o], (3.51)
XNV(mtn z) = x,.

If we integrate the characteristic curves X %' (#) between time #" and ¢"*! then we get

XY (e )

¢n+l .
::cl—&-/ (KiA#' VN)(T,Xf(T;t",a:),z)dT
¢nt+l B N "
=1z + (KxAy - V)", z)
tnfl,s d
+ / [(K * Ay -V )(t”+1 — 7, XN — 7 1), Z)]dT} ds
At dT
=z, + AHKx Ay - V)t 2) + R, (3.52)
Let us show that R; is bounded and scales like O(A¢?).

tnt+l tntl _g
R, = / ds/ dT— K*.A# )(t"Jrl — 7, XV (™ — 1t 3), 2)
n At
tn+1 .
- / / (&3 Ay 0,01 7, X (171 — 747, 0),2)
tnt+l—g
+ Z K*A# Dyt 17]\[(157”1 — 7, XV — 1t 2), 2)

(=1
X (K[iA# . 17N)(t"+1 -, Xiv(t"‘H —T7;t" z), z)}drds

I /\

tn+1
i SN
A / ds / ar (K 0, V™ | 0.1y
n tn+l—g

1 SN
+IK*V,, 7 ||L°c([o,T]xR3)||K* Voo (o, 1) }
SN SN
C(Alnax7 HK”LlLa || 4 HLTH;7 ||8t 14 ||L°t°Hj’1)At2' (353>

IN

Using (3.52)—(3.53), we can Taylor expand I7N(t”+1, XYttt 3), 2) to get
vE et XN (0 0), 2)

= UV (" 2) + AtK s Ay - V) 2) -0, TV (27, )

o2 VN (1t

o+ AHRE Ay TV (7 2) 4R,
+ / y Y1, Z)
Rl

. ($J_ + At(KiA# . I7N)(tn+l,$) +R1 — yj_)dyj_ +R1 . aZLVN(tTH»I’x)

= VYt 2) + At Ay - V) (1) - 0, VY (87, 2) + Ry + Ry
(3.54)
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By the fact that I7N(t) is constant along characteristic curves, and using an inte-
gration in time of Eq. (3.16) on the interval [t", t"1] we get

VY XN, 1), 2)

= V(¢ 2)
A )/thlOp(B(VN(t,x),{))17N(t,:z:)dt
V(e 2) - AtOp(B(V" (",2), ) V" (¢", z)
/t/ L op(B(V (7,2), ) 7 (7, 2) drds

— AtOpB(VY (" 2), ) VY (t" 2) + Ry (3.55)

gnt+l

Equating (3.54) and (3.55), multiplying the result by A¢! [/, ¢(t, z)dt, where
o(t,x) € €5([0, T] x R?), integrating in space all over R? and summlng over n from 0
to N — 1, we get

tn+l n " R
Z / / tw{ G +(Kx Ay - VY 2) -0, TV (4, )
RS At -

+ 0p<B<?N<t”,w>,§>>?”u",x)}dxdt

N-1 4 pgon
A Y / / ot 2R dudt = Ry, (3.56)
»n JR3

n=0 1=2

where DL?N(t) = VYt + At — VV(t). As we have

NT) <V Lipo, msa—1msy) < C,
L]0, T]xR?)
therefore we get
D, VYt
MT() — 0,V, weakly-* in L>(0, T; L>°(R3)). (3.57)

Since we have seen that the sequences (up to extraction of subsequences) 7Y and vV
converge weakly in L>(0, T'; H5(R?)) and also converge strongly in L>2(0, T; L2(R3))

toward the limit point V, in the weakly-* topology o(L, L1,), we get

tr o

~

(KiAy- V)0, 7V = (K Ay - V)-0,V, (3.58)

T

OpB(V" )T — 0p(B(V)) V. (3.59)
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If limy_, Ry = 0, then using (3.57)—(3.59), Eq. (3.56) becomes in the limit

! €
/0 /R3 @(tv x){at V(tv "E) + (K* .A# . V(t, x)) . aziv(t, :17)
+Op(B(V(t,2),8)) V(t, )} dzdt = 0, (3.60)

which means that the limit point V satisfies Eq. (3.44). In fact, convexity of the norm
H* implies that | V" = V||« rme@) — 0 and | VY = V| g0, z.m@s) — 0 for all
v < s. Since s > n/2 + 1 with n =3 we can choose v > n/2 + 1, which shows that
Ve?0, T, 4 (R?)) is a classical solution of (3.44). In fact we can show that
Ve, T, H}(R?*))NEH0, T; H1(R?)).

Let us now show that limy_., Ry = 0. Let us begin with R3. Using estimate (3.53)
we then have

N—1 ¢+l
At! E / /Sgo(t, z)Rydzdt
n R:

¢+l

< At 12 / (s I R1Dy, 7 5 o,k d

< CApax; ”K”Llﬂ | V ”Lfc‘va

v HL;CH;—u lellzy )AL (3.61)

Let us now deal with R,. Using Eq. (3.16) we get

5 ]:Zé /t :"H/ngp(t’ 2)R, dtdz
:Atl // //{ (t.9) L Op(B(V(r.2).) 7" 7. 2)

w(t, .’L’)Op(B( (T 1),£))? I7N( )} drdsdtde = Ry + Rys. (3.62)

The first term R4, of (3.62) can be estimated as follows:
¢ntl
Ry < At~ 12/ dt/ dz|p(t, z)|

tn+1 s
. ds / dr
fooo )l

L opB(7") 7"

L ([0, T]xR?)

IN

~N ~N
C(Ama) 10V Iz (0, 71xr3)[10: V7 | L= (10, 71xm3) [l 210, 7y R3) AL

IN

5N SN
C(AmaxaHV HLt‘ 4 ||L;‘HT"17||SD||LL)At (363)
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The second term Rys of (3.62) can be bounded as follows:

Ruy < At IZ/" / t"| OpBVY (1)) 7 (7), (1) | drdsdt

— tn+1 tn+1
< At—IZ/ dt/ ds
n=0 1" tn
§ ~N ~N ~N
/ dr[{Op(B(V" (7)) V" (1), Op(B(V " (7)) *¢ (1))
tTL
~N 7y
< TAL|Op(B(V ))V Iz 0.7:22@®3) [OP(B(V 7)) * @l L= (0,7:22(r9))
< TAtHOP(q( ))8 v ||L°<> 0,T:L2(R3) {HOP (~ ))‘P”LOC(O,T;L?(W))
N
+1Op(g(V)* = Op(¢* (V)= 0 2oy}
< CAY|V ||L°°([0,T]><R3)Haz17N||L°°(0,T;L2(]R3))

~N
AV ||L°°([o,T]xRtf)Haz(P”L*(o,T;Lz(RS))
~N
+ IV o> 0,76 @) 1@l > 0, 7522(R3)
~N
< C(Amaxv H 4 ||Lf°H;7 f‘H})At (364)

Let us show that error term associated to R is bounded and scales like O(At). Using
estimate (3.53) we have

AnY(2) = MK * Ay - V) (™ 2) + Ry
SN SN
< ClApaes K|z, [Vl om0V | o) At
< GAL. (3.65)
Using (3.65) we deduce

N—1 ¢+l
At! E / o(t", )Ry dzdt
0 tn R3

o+l
= At~ Z/ dt . dro(t, x)

/ ZAa e (t"+1 z + AnV(z) -y, z)dy,

tn+1
/ dt/ dz|p(t, z)
tn R3
CAt s 5N 12
) / |yL|2dyL / |8 t"+1,ybz)|2dyl
0

\/76] TAtlellp= o, 1:02® 0 ®2) >||8le 2 (0, 7502(R%))

< C( maX?H}K”L1 ||V ||L°°H7

\ /\

i ||3tV HL°°H5 1 ||<P||L“L2L1)At
(3.66)
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Finally using a priori estimates (3.61)—(3.64) and (3.66), we get

Ry = O(At) and thus Alfim Ry =0,

which ends the proof. O
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