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ABSTRACT
For the very first time we present 3D simulations of planets embedded in stellar irradiated
discs. It is well known that thermal effects could reverse the direction of planetary migration
from inwards to outwards, potentially saving planets in the inner, optically thick parts of the
protoplanetary disc. When considering stellar irradiation in addition to viscous friction as
a source of heating, the outer disc changes from a shadowed to a flared structure. Using a
suited analytical formula it has been shown that in the flared part of the disc the migration
is inwards; planets can migrate outwards only in shadowed regions of the disc, because the
radial gradient of entropy is stronger there. In order to confirm this result numerically, we have
computed the total torque acting on planets held on fixed orbits embedded in stellar irradiated
3D discs using the hydrodynamical code FARGOCA. We find qualitatively good agreement
between the total torque obtained with numerical simulations and the one predicted by the
analytical formula. For large masses (>20 M⊕) we find quantitative agreement, and we obtain
outwards migration regions for planets up to 60 M⊕ in the early stages of accretional discs.
We find nevertheless that the agreement with the analytic formula is quite fortuitous because
the formula underestimates the size of the horseshoe region; this error is compensated by
imperfect estimates of other terms, most likely the cooling rate and the saturation.
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1 IN T RO D U C T I O N

In recent years, it has been shown that low-mass planets
([5, 20] M⊕) can migrate outwards in discs with non-isothermal
effects (Paardekooper & Mellema 2006; Baruteau & Masset 2008;
Kley & Crida 2008; Kley, Bitsch & Klahr 2009; Masset & Casoli
2009, 2010; Paardekooper et al. 2010; Paardekooper, Baruteau &
Kley 2011; Lega et al. 2014). Precisely, the migration in the inner
part of a radiative disc can be directed outwards, while it remains
directed inwards in the outer disc (Bitsch & Kley 2011). This estab-
lishes the existence of a critical radius where migration vanishes,
towards which planetary cores migrate from both the inner and the
outer part of the disc. Therefore, the zero migration location acts as
a planet trap at which proto-planets can accumulate in resonances,
collide and eventually form bigger objects (Lyra, Paardekooper &
Mac Low 2010; Cossou et al. 2014; Coleman & Nelson 2014).

In all these works the heating is provided by viscous friction
and the cooling by radiative diffusion (in 3D discs) or by a local
cooling rate (in 2D discs). More recently, Bitsch et al. (2013) have
shown the importance of stellar irradiation on the disc structure and
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the consequences for planetary migration. The main result is that
when considering stellar irradiation the outer disc changes from
a shadowed to a flared disc. Nonetheless, opacity transitions (e.g.
the iceline) create bumps in the aspect ratio and hence shadowed
regions. In the flared part of the disc the migration turns out to be
inwards and planets can migrate outwards only in shadowed regions
of the disc, where the radial gradient of entropy is much steeper than
in the flared part of the disc. These results were obtained in equilib-
rium discs with uniform viscosity featuring a zero radial mass flux
(Bitsch et al. 2013) and extended to the case of accretion discs with
an alpha prescription for the viscosity (Shakura & Sunyaev 1973)
in Bitsch et al. (2014). This second case is of particular interest,
since a given mass-flow (Ṁ) rate corresponds to a specific disc age
(Hartmann et al. 1998) so that investigating the disc structure for
different values of Ṁ is equivalent to studying the disc structure as
a function of the disc evolution (Bitsch et al. 2014, 2015).

In Bitsch et al. (2013, 2014, 2015) the planet migration maps have
been obtained applying the torque formula of Paardekooper et al.
(2011) using the disc properties obtained in the simulations. The
formula, although very complex, is based on the fact that the torque
exerted by the protoplanetary disc on to the planet has two main
contributions: (i) the so-called Lindblad torque due to the spiral
arms launched by the planet in the disc, which is not affected by the
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equation of state,1 and (ii) the co-orbital corotation torque caused
by material librating in the horseshoe region. When considering
radiative effects the corotation torque contribution can be positive
and possibly dominate over the negative Lindblad torque, leading to
outwards migration. The Paardekooper et al. formula was calibrated
with a 2D hydrodynamical model for low-mass planets (5 M⊕).

With a specific disc setting not accounting for stellar irradiation,
Kley et al. (2009) found positive total torque for planetary masses
in the range [5, 30] Earth masses. The influence of the disc’s mass
on the migration was studied in Bitsch & Kley (2011) and its ap-
plication to Earth sized planets was addressed by Lega et al. (2014)
who found the contribution of a new torque not accounted for by
the formula. This new negative torque is due to the formation of an
asymmetric cold and dense finger of gas driven by circulation and
libration streamlines.

The aim of this paper is to investigate numerically the total torque
acting on planets kept on fixed orbits in 3D stellar irradiated discs
and provide quantitative comparisons with the Paardekooper et al.
(2011) formula. We use the explicit/implicit hydrodynamical code
FARGOCA (Lega et al. 2014) that includes a two-temperature solver
for radiative transfer in the flux-limited approximation.

In principle, stellar heating only changes the structure of the
disc and does not act on the mechanism responsible for outwards
migration directly. Nevertheless, the analytical formula has been
calibrated on 2D discs so that a quantitative test on the validity of
that formula for realistic 3D discs is needed. Moreover, a constant
mass flow Ṁ through the disc (Bitsch et al. 2014) might have an
influence on the torque acting on planets and, to our knowledge, this
case has never been tested before in 3D discs with a non-isothermal
EOS.

The paper is organized as follows: the physical modelling is pre-
sented in Section 2; in Section 3 we describe the migration maps
obtained from the analytic formula applied to our 2D unperturbed
discs.2 In Sections 4 and 5 we provide results of 3D simulations
done, respectively, on a constant viscosity stellar irradiated equilib-
rium disc and on an α-viscosity accretion disc. In Section 6 we go
beyond the simple comparisons of the net torques predicted analyt-
ically and measured numerically, focusing on a key ingredient of
the analytic formula: the size of the corotation zone, which governs
the corotation torque and the torque saturation. The conclusions are
provided in Section 7.

2 PH Y S I C A L M O D E L L I N G

The protoplanetary disc is treated as a 3D non-self-gravitating gas
whose motion is described by the Navier–Stokes equations. We use
spherical coordinates (r, θ , ϕ) where r is the radial distance from the
star, i.e. from the origin, θ is the polar angle measured from the z-
axis (the colatitude) and ϕ is the azimuthal coordinate starting from
the x-axis. The mid-plane of the disc is at the equator θ = π

2 . We
work in a coordinate system which rotates with angular velocity:

�p =
√

G(M� + mp)

ap
3

�
√

GM�

ap
3

,

where M� is the mass of the central star, G is the gravitational
constant and ap is the semi-major axis of a planet of mass mp,
assumed to be on a circular orbit. The gravitational influence of

1 Actually, it scales with γ�0, with �0 given in equation (5).
2 Discs in thermal equilibrium in the (r − z) plane.

the planet on the disc is modelled as in Kley et al. (2009) using a
cubic-potential of the form:

	p =
{

−mpG

d
d > ε

−mpG

d
f ( d

ε
) d ≤ ε,

(1)

where d is the distance from the disc element to the planet and ε is
the softening length. Writing x = d/ε the function f is given by

f (x) = x4 − 2x3 + 2x.

We have considered ε = 0.6RH in our simulations sets SED and
SAD and ε = 0.5RH for simulation set RED, with RH the Hill radius
of the planet:

RH = ap
3

√
mp

3M∗
.

We will discuss in Section 6 the dependence of the total torque on
the softening length.

In the Paardekooper formula, there is also a softening length
parameter β and it has been fixed to β = 0.35H (H being the disc’s
local scale height) from previous comparison between the formula
and 3D simulations (Bitsch & Kley 2011).

The hydrodynamical equations solved in the code are described
in Lega et al. (2014), the two-temperature approach for the stellar
irradiation was described in detail in Bitsch et al. (2013) and the
opacity prescription in Bitsch et al. (2014). The flux received from
the star at a radial distance r is

F� = R2
�σT 4

� /r2, (2)

where the radius of the star is set to R� = 1.5 R� and the temperature
T� = 4370 K (appropriate for a solar-type protostar). We consider
the disc settings of Bitsch et al. (2013), namely a disc extending
from rmin ≤ r ≤ rmax with rmin = 1 au and rmax = 50 au. In the
vertical direction the disc extends from the mid-plane (θ � 90◦) to
20◦ above the mid-plane, i.e. θ � 70◦. The initial surface density
profile is 
(r) = 
0(r/aJ)−b and aJ = 5.2 au.

We consider in the following different sets of simulations.
Precisely, we consider a stellar irradiated equilibrium disc (set
SED hereafter), with uniform viscosity (viscosity coefficient ν =
10−5a2

J �p), 
0 = 4.88 × 10−4 in code units (147 g cm−2) and
b = 0.5. We also consider a stellar irradiated accretion discs
(set SAD hereafter) with alpha viscosity (α = 0.0054), constant
Ṁ = 4 × 10−8 M� yr−1 and initial value of b = 15/14 and of

0 = 430 g cm−2. The initial value of b corresponds to the radial
surface density profile in flared disc3 with constant Ṁ at all orbital
distances. A disc with Ṁ = 4 × 10−8 M� yr−1 corresponds to the
early evolution stages of accretion discs and is probably younger
than 1 Myr (Hartmann et al. 1998). The disc structure of the SAD
case is discussed in Bitsch et al. (2015).

For comparison, we will also consider the case of a radiative
equilibrium disc (RED) with uniform viscosity (ν = 10−5a2

J �p)
and b = 0.5, where the only source of heating is viscous heating
(set RED hereafter). This setup of the RED disc has been previously
studied in Kley et al. (2009); Bitsch & Kley (2011) and in Lega et al.
(2014) for planetary masses up to 30 M⊕.

Before placing the planet in a 3D disc, we bring the disc to radia-
tive equilibrium. We first model each disc in 2D, with coordinates
(r, θ ). For the accretion disc the (r, θ ) disc evolution is explained
in detail in Bitsch et al. (2014, 2015). Once the 2D equilibrium is

3 With flaring index 2/7.
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Outwards migration for planets 1719

Figure 1. Aspect ratio of the 2D (r, θ ) equilibrium of simulation set SED
(green) and SAD with Ṁ = 4 × 10−8 (blue). For comparison the red curve
provides the aspect ratio of the RED studied in Kley et al. (2009) and Lega
et al. (2014).

achieved all the gas fields are expanded to 3D. The aspect ratio of the
2D equilibrium for the SED, the SAD with Ṁ = 4 × 10−8 M� yr−1

and the RED are reported in Fig. 1. We remark that for the SED
and RED with uniform viscosity, the settling of the aspect ratio
to an equilibrium value does not change the surface radial density
profile of the disc. Instead, in the SAD disc, in which the viscosity
follows the alpha-prescription and thus depends on the disc’s local
scale height H, the resulting surface density profile at equilibrium
is somewhat different from the initial one (see Bitsch et al. 2014).

In the two cases where the disc is heated by the star we observe
the typical profile of a flared disc, while we have a shadowed disc
in the RED case. The bump in H/r around 3–4 au is caused by a
transition in opacity that changes the local cooling rate of the disc
and hence changes the disc’s temperature (Bitsch et al. 2014).

The resolution of our computational grid is chosen in order to
have in the radial direction approximatively n grid cells in the horse-
shoe region. The half-width of the planet’s horseshoe region is given
in the isothermal disc approximation (Masset, D’Angelo & Kley
2006) by

xhs2D = 1.16ap

√
q

h
, (3)

where q = mp/M� and h is the disc aspect ratio at ap. We have
checked that this formula can still be used as a guideline for the
choice of the resolution for non-isothermal 3D discs with and with-
out stellar irradiation. However, equation (3) is based on the equiv-
alence of the linear corotation torque and the horseshoe drag in 2D
discs. In Masset et al. (2006) it has been shown that non-linearities
appear on the flow for mass ratios q ≥ h3. For these planetary masses
the horseshoe region is larger than the linear prediction resulting in
a boost of the corotation torque. It is therefore important to check
whether also in 3D hydrodynamical simulations the horseshoe width
increases for q ≥ h3 and what is the corresponding impact in the
corotation torque. Section 6 is devoted to this topic.

The values of the masses and resolutions (Nr, Nθ , Nϕ) for the
SED disc are shown in Table 1. In Lega et al. (2014) we have shown

Table 1. Simulations parameters for set SED. Em-
bedded planets are at distance 4 au from the star.

Mass (M⊕) (Nr,Nθ , Nϕ) n cells in xhs2D

8 (1326, 66, 908) 4
10 (1186, 66, 812) 4
20 (1086, 82, 740) 5
25 (1010, 66, 702) 4
25 (1238, 80, 876) 5
30 (911, 66, 620) 4
40 (770, 66, 542) 4
50 (670, 60, 468) 4
60 (612, 60, 430) 4
60 (764, 66, 540) 5

that a resolution of four grid cells in the half-width of the horseshoe
region matched the requirement of having resolution-independent
results within reasonable CPU times for masses up to 20 M⊕. Here
we use four grid cells in the half-width of the horseshoe region also
for planets with masses larger than 20 M⊕; We have tested that
results are stable when increasing the resolution to five grid cells in
some test cases.

Concerning the calculation of the gravitational torque acting on
the planet we recall that it is common to exclude the inner part of
the Hill sphere of the planet. This is obtained by applying a tapering
function (named Hill cut in the following) which in our case reads
(Kley et al. 2009):

fb(d) =
[

exp

(
−d/RH − b

b/10

)
+ 1

]−1

. (4)

The value of fb is zero at the planet location and increases to 1
at distances d from the planet larger than the Hill radius RH. The
parameter b denotes the distance from the planet, in unit of Hill
radius, at which fb = 1/2. Here we use b = 0.8 (Crida et al. 2009).

This procedure allows us to exclude the part of the disc that is
gravitationally bound to planets that form a circum-planetary disc.
However, this prescription is not justified for small mass planets
that do not have a circum-planetary disc. For small planets we mean
planets having a Bondi radius (RB) smaller than their Hill radius.
From the definition of the Bondi and Hill radii one obtains RB < RH

for q < h3/
√

3.4 In the following we show the total torque com-
puted with Hill cut, and, for planetary masses satisfying q < h3/

√
3,

we also show the total torque computed without Hill cut.

3 M I G R AT I O N M A P S

The change in the disc structure due to stellar irradiation has im-
portant consequences for the migration of embedded bodies (Bitsch
et al. 2013). One can estimate the torque acting on planets using
the formula provided by Paardekooper et al. (2011). The migration
maps obtained from the formula are shown in Fig. 2 for respectively
set SED (top panel), set SAD with Ṁ = 4 × 10−8 M� yr−1 (middle
panel) and set RED (bottom panel). The values of the total torque
�tot are normalized with respect to

�0 = (q/h)2
pa
4
p�

2
p (5)

where 
p is the disc’s surface density at the planet location ap.

4 We notice that the parameter that determines the flow linearity in the planet
vicinity is q < h3 (Masset et al. 2006).
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1720 E. Lega et al.

Figure 2. Migration maps for simulation set SAD with Ṁ = 4 ×
10−8 M� yr−1 (top), SED (middle). For comparison, the migration map
of the RED is also plotted (bottom). The white x symbols indicate the po-
sition and the masses of the planets for which we compute the total torque
with 3D simulations in this paper.

We do not enter here the details of the torque formula provided by
Paardekooper et al. (2011), we just recall that outwards migration
is a delicate process depending on the dynamical properties of the
corotation region as well as on the viscosity of the disc and of its
cooling properties. Different time-scales are at play (see Bitsch &
Kley 2010), in order to detect a positive corotation torque contribu-
tion which possibly dominates over the negative Lindblad torque.

We remark that the formula has been obtained for planets that
do not perturb the disc significantly (q < h3, i.e. linear regime)
while the maps shown in Fig. 2 consider also intermediate-mass
planets (30–70 M⊕). The torque saturation, which determines the
upper limit in planet mass for outwards migration, depends on the
viscous time-scale defined by

τν = (xhs2Dγ −1/4)2/ν, (6)

where γ is the adiabatic index, γ = 1.4 in our simulations. The
width of the horseshoe region is xhs2D/γ 1/4 in order to take adiabatic
effects into account (Paardekooper & Papaloizou 2009). However,
for intermediate-mass planets, the actual width of the horseshoe
region can be different from xhs2D of equation (3) (Masset et al.
2006) and this difference can have an impact on torque saturation.

In the migration map of the SAD case (Fig. 2,top) we see that, us-
ing xhs2D/γ 1/4, torque saturation is supposed to occur for quite large
planetary masses and outwards migration is expected for planets up
to 70 M⊕ (this upper limit can moderately change by changing the
smoothing length β.).

It is interesting to check this result with 3D numerical simula-
tions, because outward migration of intermediate-mass planets has
important impacts for formation models of giant planets. In fact,
giant planet precursors could be prevented from migrating into the
inner disc before they reach a mass that allows gap opening and
therefore slower inward migration in the type-II migration regime.

In order to test the validity of the formula we have considered
planets of different masses held on fixed orbits in each of the three
considered discs and we have computed the evolution of the torque
with time until we obtain a stationary state. We choose the distance
of the planets from the star within the region of expected outwards
migration from Fig. 2.

4 EQU I LI BRI UM DI SCS

In the SED we have embedded planets of different masses held on
a fixed orbit at r = 4 au, for which we expect outwards migration
from the torque formula (Fig. 2, middle panel). Let us notice that,
in the inner part of the disc, the aspect ratio of the SED is very
similar to that of the RED (Fig. 1); since the density gradient is the
same for both discs the computation of the total torque should give
results similar to those obtained in Kley et al. (2009) and Lega et al.
(2014).

When considering planets at 4 au we observe (Fig. 3) that for
masses larger than 30 Earth masses the torque is slightly larger than
the one provided by the formula and the transition to negative torque
occurs at 45 M⊕ instead of 40 M⊕ as expected from the formula
(Fig. 2, middle panel). However, the overall picture is quite in good
agreement with the results provided by the analytical formula. For
comparison we have extended our previous study of the RED from
Lega et al. (2014) for planets at 5.2 au towards planets with masses
up to 60 Earth masses. We can appreciate in Fig. 4 the agreement
between the results of numerical simulations and the values given
by the analytical formula.

In both the RED and SED, we provide in the following subsec-
tions a quantitative comparison between the values of the torque

MNRAS 452, 1717–1726 (2015)

 at B
iblio Planets on D

ecem
ber 28, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Outwards migration for planets 1721

Figure 3. Stellar irradiated equilibrium disc (SED): comparison with
Paardekooper et al. (2011) formula for planets on fixed orbits at 4 au. For
planets of 10 and 8 M⊕ we also show the value of the torque computed
without the Hill cut (see text).

Figure 4. Same as Fig. 3 for the radiative disc (RED) studied in Lega
et al. (2014) whose aspect ratio is reported in Fig. 1 and the corresponding
migration map in Fig. 2 (bottom panel). For planet of mass smaller than
10 M⊕ we also show the value of the torque computed without the Hill cut
(see text).

resulting from numerical simulations and the values given by the
formula.

4.1 Planetary masses smaller than 10 M⊕

In the case of the SED disc, the minimum planetary mass to have
outwards migration is somewhat larger than that predicted in the
Paardekooper et al. (2011) formula (about 8 M⊕ against 4 M⊕).
This minimum mass is very important for giant planet formation
models. The larger transition mass that we find can be explained with
the cold finger effect studied in Lega et al. (2014). The unperturbed
temperature at the planet location is of 112 K, and, according to the
criterion given in Lega et al. (2014), a negative contribution to the

total torque (cold finger) exists when the Bondi radius RB is smaller
that the Hill radius RH. We have suggested

RB

RH
= (mp/7.1M⊕)2/3

(a/5.2 au)(T /75 K)
. (7)

Applying equation (7) for planets at 4 au where T = 112 K, we obtain
RB
RH

= 1 for a 10 M⊕ and RB
RH

= 0.6 for a 5 M⊕ planet. Thus, the
expected transition between outwards and inwards migration occurs
in the interval [5, 10] M⊕ in very good agreement with the value
of 8 M⊕ found in the simulations. In the RED disc, the minimum
planetary mass to have outwards migration is about 4 M⊕ against
2 M⊕, due to the cold finger effect found in Lega et al. (2014).

4.2 Planetary masses in the interval 10-30 M⊕
In Fig. 4 we notice that the maximum value of the computed torque
as a function of planetary mass is about a factor of 2 smaller than
the maximum provided by the formula. The planetary mass for
which we measure the largest positive torque value is respectively
of 20 M⊕ for the RED case and of 30 M⊕ for the SED case. In
both cases the formula provides the largest positive torque for a
planet of 10 M⊕, and the onset of saturation occurs at planetary
masses smaller than what found in 3D simulations. We will discuss
this point in Section 6. These quantitative discrepancies have already
been pointed out by Kley et al. (2009) caused by differences between
2D and 3D effects.

4.3 Planetary masses larger than 30 M⊕
The analytical formula was derived for small mass planets (5 M⊕),
i.e. for planets that only slightly perturb the disc. However, larger
mass planets start opening a partial gap in the disc, meaning they
significantly perturb the disc. These perturbations make the appli-
cation of the torque formula dubious for masses larger than 30 M⊕.
However, the density in the corotation region is perturbed by less
than 30 per cent up to 60 M⊕, i.e. we are still far from planetary
masses which really open a gap in the disc.

We remark that the formula and simulation results are in very
good agreement for masses larger than 30 M⊕. The torques in
the formula are calculated from the gradients of surface density,
temperature and entropy in the unperturbed disc. In the formula, the
corotation torque saturates as the planet mass increases, making the
total torque transit to negative. In our simulations, the total torque is
obtained directly from the density structure of the disc, meaning that
on top of saturation effects, the partial opening of a gap is also taken
into account, decreasing even more the corotation torque. The fact
that these two different approaches match in the total torque may
be a coincidence, but we remind that the density in the corotation
region is perturbed by less than 30 per cent up to 60 M⊕.

We can conclude this section saying that when we take into ac-
count stellar irradiation in an equilibrium disc no additional effects
on the total torque acting on planets in the explored mass range of
[8, 60] Earth masses are observed. Moreover, the analytical formula
Paardekooper et al. (2011) can be used with good confidence when
performing, for example, N-body simulations with a migration pre-
scription.

5 ST E L L A R IR R A D I AT E D AC C R E T I O N D I S C S

Protoplanetary discs accrete gas on to the central Star (Lynden-Bell
& Pringle 1974). Thus equilibrium discs like the SED and RED
cases investigated above are not a good approximation of reality,
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Table 2. Simulation parameters for set SAD.

Mass (M⊕) (Nr, Nθ , Nϕ ) n cells in xhs2D Distance (au)

5 (1600, 110, 1132) 4 4
15 (1320, 96, 910) 4 4
15 (1256, 90, 886) 6 5
20 (1066, 74, 750) 4 4
20 (1600, 100, 1132) 7 4
20 (1318, 80, 920) 6 5
20 (1528, 90, 1072) 7 5
20 (1134, 90, 758) 7 6
30 (1502, 90, 1068) 7 4
30 (1250, 76, 878) 7 5
30 (1080, 78, 718) 7 6
40 (1360, 86, 972) 7 4
40 (1080, 70, 758) 7 5
40 (926, 66, 622) 7 6
50 (1226, 76, 868) 7 4
50 (966, 70, 680) 7 5
50 (826, 66, 558) 7 6
60 (1118, 80, 794) 7 4
60 (882, 66, 624) 7 5
60 (754, 66, 514) 7 6
70 (1034, 74, 730) 7 4
70 (808, 66, 576) 7 5
70 (692, 56, 476) 7 6

given that they do not transport mass radially. A much better ap-
proximation are the discs where the mass flow Ṁ is independent
of radius, called accretion discs. Their structure has been inves-
tigated in Bitsch et al. (2014). Here we check the validity of the
Paardekooper et al. (2011) formula in these more realistic discs.

We consider the case of an accretion disc with constant Ṁ =
4 × 10−8 M� yr−1 and we compute the total torque for planets in
the mass interval 20–70 Earth masses placed at distances of 4 au,
5 au and 6 au from the central star. We have also made a few tests on
smaller planetary masses. The values of the masses and resolutions
(Nr, Nθ , Nϕ) for the SAD disc are shown in Table 2.

We have used a resolution of seven grid cells in the half-width of
the horseshoe region for all the computations in the interval 20–70
Earth masses. We have checked that this is needed in order to have
results independent of the resolution. For small planetary masses a
resolution of four grid cells is enough to achieve convergence (see
Table 2).

In Fig. 5 (top) we report the total torque computed on planets
held on fixed orbits at 4 au. The transition from inwards to outwards
migration of small masses occurs for planet masses about twice as
big as predicted by the Paardekooper et al. formula. We find again
the ‘cold finger’ effects, with a transition to negative torque at about
10 Earth masses.

In the interval [15, 30] M⊕ we observe a positive total torque
with values smaller than expected from the formula as in the pre-
viously examined RED and SED. In the interval [40, 70] M⊕ the
results from numerical simulations very nicely agree with the torque
provided by the analytical formula. We find positive torques up to
planetary masses of 60 M⊕.

Similar results are found at 5 au and 6 au (Fig. 5, middle and bot-
tom panels); precisely, cores of 50 M⊕ undergo outwards migration
at 5 au and at 6 au. From the migration map the transition between
outwards and inwards migration occurs for slightly larger masses;
however the overall picture and the radial extent of the outwards
migration are quite well reproduced.

Figure 5. Accretion disc: comparison with Paardekooper et al. (2011) for-
mula. Top panel: planets at 4 au; middle: planets at 5 au; bottom panel:
planets at 6 au. The red points are obtained with a resolution of seven grid
cells in the half-width of the horseshoe region, the green ones with a reso-
lution of four grid cells.

As we pointed out in Section 3 this is an important result for mod-
els of giant planet formation. This may solve the problem pointed
out in Coleman & Nelson (2014) where all planets were lost by
migration before becoming gas-giant planets. However, we stress
that this is true only for discs with large Ṁ like the one studied here.
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Outwards migration for planets 1723

Figure 6. Radial torque density for planets of different masses at 5 au in
the accretion disc with Ṁ = 4 × 10−8 M� yr−1 (top) and in the RED disc
for planets at 5.2 au (bottom).

As pointed out in Bitsch et al. (2014, 2015), the maximum planet
mass for outwards migration decreases with decreasing Ṁ .

5.1 Radial torque distribution

To further confirm that the outwards migration detected in the ac-
cretion disc corresponds to that previously found in radiative discs
without stellar heating and without a net mass flux through the
disc we show the contribution to the torque in the close vicinity of
the planets for both SAD and RED. We compute the radial torque
density �(r), i.e. the torque exerted on the planet by a ring of disc
material located at a distance r from the star. The integral of �(r)
on the radial coordinate provides the total torque �tot shown in the
previous section:

�tot =
∫ rmax

rmin

�(r)dr . (8)

Fig. 6 shows the radial distribution of the torque exerted on planets of
different masses in the accretion disc with Ṁ = 4 × 10−8 M� yr−1

at 5 au (top panel) and the radial torque density for the RED disc
for planets placed at 5.2 au (bottom panel).

In a disc without thermal effects (isothermal disc) �(r) would be
positive for r < rp and negative for r > rp. Moreover, �(r)/�0 would
be independent of the planet’s mass. Here we observe that �(r)/�0

changes with the planetary mass. This effect is due to the saturation

of the entropy-driven corotation torque (Baruteau & Masset 2008;
Kley et al. 2009) which is a function of planetary masses. We remark
in Fig. 6 that, when the planetary mass increases from 20 to 70 M⊕,
the absolute value of �/�0 decreases and the location where �

transits from positive to negative, which is at r > rp for the 20 M⊕
planet, approaches rp. The displacement of the point where �(r) = 0
relative to rp is indicative of the strength of the total positive torque.
In this case, the total torque decreases for increasing planetary mass,
until it becomes slightly negative for the 70 M⊕ planet. In the case
of the RED disc the results are very similar, although one can notice
quantitative differences. In this case, �(rp) = 0 for a planet of
40 M⊕. In fact, the transition to inwards migration occurs at about
40 M⊕, as shown in Fig. 4.

6 O N TH E W I D T H O F TH E H O R S E S H O E
R E G I O N

We now go beyond the raw comparison of the torques predicted
in Paardekooper et al. formula and measured numerically, in order
to understand how such a good agreement is achieved for large
masses but not for low masses. This is indeed surprising because
the formula is derived in principle in the linear regime, while for
mp > 30 M⊕, where the agreement is best, the non-linearities should
start to appear (because of the condition q > h3). Here we focus
on the size of the corotation zone, which is a key parameter for the
estimate of the corotation torque and of the torque saturation.

According to Masset et al. (2006) equation (3), obtained for
2D discs, is valid only for planet to star mass ratio q < h3. The
horseshoe region for large masses [q > 1.5 × 10−4 in Masset et al.
(2006)] behaves as in the restricted three-body problem (RTBP),
i.e. scales with q1/3. For intermediate masses, the width of the
horseshoe region is larger than that predicted by the q1/2 scaling.
This is a manifestation of the flow non-linearity turning out in a
boost of the corotation torque (Masset et al. 2006).

In this section, we provide a measure of the half-width of the
horseshoe region (xhs3D hereafter), for SED and for the SAD with
planets, respectively, at 4 au and at 5 au and compare it to xhs2D

of equation (3). Since differences with respect to equation (3) can
come from 3D effects as well as from radiative effects we will
proceed in two steps: (i) we determine the difference between the
horseshoe width in 2D and 3D simulations in an isothermal setting,
(ii) we compare isothermal 3D to fully radiative 3D.

6.1 Comparison between 2D and 3D simulations

For the 2D case we used the FARGO code (Masset 2000). We recall
that in 2D a softening length ε is applied to the planet potential
through:

	 = − Gmp√
a2

p + ε2
. (9)

In 2D models, equation (9) allows to mimic the average influence
that the planet would have on the vertical gas column. The measure
of the width of the horseshoe region is determined by computing the
streamlines. In Fig. 7 we plot the half-width of the horseshoe region
normalized over the planet semi-major axis ap for different values
of the planet to star mass ratio q in the mass range considered in
this paper ([10, 70] M⊕). Using the nominal setting given in Masset
et al. (2006) we recover their results (see their fig. 9). In Fig. 7 the
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1724 E. Lega et al.

Figure 7. Simulations with isothermal EOS. Half-width of the horseshoe
region normalized over ap as a function of the planet to star mass ratio q.
Results are shown for two sets of 2D simulations with respectively ε = 0.3H
and ε = 0.6H and for 3D simulation with isothermal equation of state and
ε = 0.6RH. The lines show the different fits in q1/2(with labels xhs2D and
0.9xhs2D, see text) and q1/3 (with labels xMhs2D and 0.9xMhs2D, see text).

half-width of the horseshoe region obtained with a softening length
of ε = 0.3H (as in Masset et al. 2006) is fitted by

xMhs2D � 2.45a(q/3)1/3 (10)

for q > 1.35 × 10−4 while the xhs2D law of equation (3) nicely fits
the data for q ≤ 4.5 × 10−5. The value of the aspect ratio for these
simulations is h = 0.044; this value is used in the plot of the xhs2D

law.
We remark that in 2D the effect of the softening is felt well

outside the Hill radius, so that the horseshoe region clearly depends
on the softening length. In all our 3D numerical simulations we
have used a softening length of 0.6RH. In order to compare 2D and
3D isothermal results we have also run a set of 2D simulations
with a softening length of ε = 0.6H. In Fig. 7 we observe that in
this case the transition between the q1/2 and the q1/3 scaling occurs
in the mass interval 9 × 10−5 < q < 1.65 × 10−4. The width of
the horseshoe region, both in the linear and in the RTBP regime,
is reduced by about 10 per cent with respect to the values obtained
for the smaller softening length. In Fig. 7 we have also reported
the measure of the width of the horseshoe region obtained with 3D
isothermal simulations with ε = 0.6RH. The disc parameters are
the ones of SAD set, with planets at 5 au. The aspect ratio at this
distance from the star is h = 0.044 (Fig. 1). For 3D simulations
the measure of the width of the horseshoe region is determined by
computing the streamlines on the disc mid-plane. Results are in
good agreement with the 2D case with ε = 0.6H5 so that we do not
observe 2D versus 3D effects in the horseshoe region width.

6.2 Comparison between 3D isothermal and 3D radiative
simulations

We call xMhs3D � 0.9xMhs2D the width of the horseshoe region
obtained by the fit of 3D isothermal simulations in the RTBP regime

5 A value of the softening length of ε = 0.7H is shown to provide a radial
torque density very similar to the one obtained with 3D simulations (see
Kley et al. 2012.)

Figure 8. Same as Fig. 7 for 3D simulations for respectively SED with
planets at 4 au, and SAD with planets at 5 au and for the 3D isothermal run
of Fig. 7. The lines show the fits in q1/2 and q1/3. The law for the horseshoe
region used in the Paardekooper formula, xhs2Dγ −1/4, is also shown.

and xhs3D � 0.9xhs2D the fit obtained for the linear regime. Fig. 8
shows the measure of the width of horseshoe region for SED with
planets at 4 au,6 and SAD with planets at 5 au.

For comparison we plot the results of the 3D isothermal simu-
lations of Fig. 7. We recover a regime with a q1/2 scaling and a
regime with a q1/3 scaling and in both regimes the horseshoe re-
gion is narrower than in the isothermal case of about a factor γ −1/4

as expected from Paardekooper & Papaloizou (2009). In the same
Fig. 8 we have plotted the law for the horseshoe region used in the
Paardekooper formula, i.e. xhs2Dγ −1/4.

We observe that the measured horseshoe width is respectively �
10 per cent narrower than xhs2Dγ −1/4 in the linear (or q1/2 scaling)
regime and about � 10 per cent larger in the non-linear (or q1/3

scaling) regime. Now a larger horseshoe region causes saturation
earlier. We discuss this point in Section 6.4.

In the isothermal case the transition between the two regimes
is associated with a boost in the corotation torque (Masset et al.
2006) and a small softening length is required to detect it. There-
fore, we can wonder if we have missed some effects in the torque
computation by using a softening length of 0.6RH.

6.3 Comparison between 3D radiative discs with different
softening length

In the case of 3D isothermal simulations it has been shown (Kley
et al. 2009) that a decrease in the softening length for a planet of
20 M⊕ corresponds to a drastic change in the density structure in
the planet vicinity which has an important impact on the corotation
torque. Precisely, the authors found a torque excess in agreement
with Masset et al. (2006). The situation changes when taking into
account thermal effects. In this case a deeper potential corresponds
to an increase of temperature near the planet so that the density
distribution close to the planet is not drastically changed. In Kley
et al. (2009) (their fig. 14, top) changing the smoothing length
from ε = 0.8RH and ε = 0.5RH in a fully radiative setting acts in
increasing the torque of about 5 per cent, with respect to 30 per cent

6 The aspect ratio for SED at 4 au is h̃ = 0.041 (Fig. 1). To be compared to
the other data sets having h = 0.044 a rescaling by

√
h̃/h is applied.
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Outwards migration for planets 1725

Figure 9. Half-width of the horseshoe region as a function planet to star
mass ratio (q) for 3D simulations of RED set, for respectively ε = 0.5RH

and ε = 0.3RH. The lines show the fits in q1/2 and q1/3 obtained for the
stellar irradiated discs (Fig. 8). The law for the horseshoe region used in the
Paardekooper formula, xhs2Dγ −1/4, is also shown.

of increase in the corresponding isothermal case. We have extended
the discussion of Kley et al. (2009) concerning the dependence of
the torque on the softening length by computing the width of the
horseshoe region and the total torque acting on fixed planets in the
range [10: 60] M⊕ for the RED set with ε = 0.3RH. In Fig. 9 it
appears clearly that the width of the horseshoe region is almost
not affected by the change in the softening length.7 The measured
torque is also almost not affected by the change in the softening
length.

We observe that in the q1/2 regime the horseshoe region is nicely
fitted by the law used in the Paardekooper formula (Fig. 9). How-
ever, although the measured width of the horseshoe region perfectly
matches the law used in the formula up to 20 M⊕ the measured
torque fits only qualitatively the one provided by the formula as
explained in Section 4.2. This is not surprising since many other
parameters enter in the formula and can possibly be different in
realistic 3D discs.

In isothermal discs a torque excess is correlated to the departure
from the linear regime (Masset et al. 2006) while in all our radia-
tive discs we do not observe the same phenomenon. Taking into
account thermal effects, the transition from the linear to the non-
linear regime, even considering a small softening length (Fig. 9), is
smoother in radiative discs (Figs 8 and 9) with respect the isother-
mal case with small softening length (Fig. 7). Moreover, the mass
at which we observe a departure from the linear regime in Figs 8
and 9 corresponds to the onset of torque saturation in Figs 3, 4 and 5
(middle panel).

6.4 Impact of the measured horseshoe width on planet
migration

The width of the horseshoe region is of crucial importance for
the saturation of the torque acting on more massive planets. A
larger width of the horseshoe region increases the viscous time-scale
(equation 6) making torque saturation easier. As demonstrated in

7 The aspect ratio for RED at 5.2 au is h̃ = 0.04 (Fig. 1). To be compared to
data having h = 0.044 a rescaling by

√
h̃/h is applied.

Figure 10. Migration maps for simulation set SAD with Ṁ = 4 ×
10−8 M� yr−1 obtained using the width of the horseshoe region measured
by our simulations (Fig. 8) instead of xhs2Dγ −1/4.

Figs 8 and 9, the width of the horseshoe region increases for more
massive planets and does not follow the simple law of xhs2Dγ −1/4,
which is only valid for low-mass planets.

In Fig. 10 we show the migration map of the SAD disc, where
we used the width of the horseshoe region measured by our sim-
ulations (Fig. 8) instead of xhs2Dγ −1/4. When comparing to Fig. 2,
top panel, we see that for planetary masses of up to 40 M⊕ the mi-
gration map remains unchanged while for larger planetary masses,
we observe that the transition of the torque from positive to nega-
tive occurs in the interval 40–50 M⊕. The transition occurs in the
interval 60–70 M⊕ in Fig. 2 (top panel). This is caused by a larger
width of the horseshoe region, which makes saturation of the coro-
tation torque easier. Hence the total torque transitions into negative
values at smaller planetary masses. Adapting the width of the horse-
shoe region to our measured values in the torque formula therefore
overpredicts the transition to inward migration compared to our
simulations.

The difference between our simulations and the torque predicted
by the formula is therefore not only caused by a different width of
the horseshoe region. The cooling process plays also an important
role and the vertical cooling in 2D disc is treated like blackbody
radiation, while our 3D disc features vertical heat diffusion.

Therefore we think that the quantitative agreement between the
torque formula of Paardekooper et al. (2011) and simulations for
planetary masses mP > 30 M⊕ is a coincidence and the formula
should be updated with results of 3D simulations. However, this is
beyond the scope of this paper and left for future work.

7 C O N C L U S I O N

Using 3D hydrodynamical simulations including stellar and viscous
heating as well as radiative cooling we have computed the torque
acting on planets of various masses kept on fixed circular orbits in
both equilibrium and accretional protoplanetary discs. We confirm
the results previously obtained on constant viscosity equilibrium
discs, where the only source of heating was provided by viscous
friction. The comparison between the total torque obtained with
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numerical simulations and the one predicted by semi-empirical for-
mula (Paardekooper et al. 2011) is in quantitatively good agreement
for large masses (>20 M⊕). In particular, the formula predicts well
the maximum planet mass at which inwards migration is prevented
by the action of the entropy-driven corotation torque.

Instead, although our results remain similar to those expected by
the Paardekooper formula, we observe quantitative differences as
large as a factor of ∼2 concerning: (i) the value of the maximum
positive torque as a function of the planet’s mass, (ii) the value of the
planet mass at which the torque is maximal and (iii) the minimum
planet mass allowing outwards migration. The last difference is due
to the presence of a ‘cold finger effect’ already discussed extensively
in Lega et al. (2014). The differences concerning the items (i) and
(ii) have already been pointed out by Kley et al. (2009) as caused
by differences between 2D and 3D effects. Moreover, by measuring
the width of the horseshoe region we have observed that the value
of the planet mass at which the torque is maximal is correlated to
the departure from the linear regime. For large planetary masses the
quantitatively good agreement between the numerical results and the
prediction of the analytic formula was unexpected since the formula
is based on unperturbed discs while planets with masses larger than
20 M⊕ start opening a partial gap. Precisely, torque saturation has
the same behaviour in the torque formula and in simulations though
saturation effects appear for larger planetary masses with respect to
the torque formula. From the measure of the width of the horseshoe
region, we have found that the onset of saturation is correlated to
the onset of the non-linear regime not taken into account by the
formula. Plugging the measured horseshoe width in the formula
gives a worse comparison. Therefore, we think that the quantitative
agreement on large masses is a coincidence, and future works is
needed to provide a more accurate torque expression.

At the present state of the art, though there are some differences
between the torque formula and 3D simulations, the zero torque
location at the transition from outwards to inwards migration at
large planetary masses is reproduced surprisingly well, making the
formula applicable to the study of planetary migration properties
from the unperturbed disc structure.
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