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By means of simple analytic models and numerical integra-
tions, we explore the resonant structure of the Kuiper belt. We
find that the inner order-one mean motion resonances with
Neptune are very stable and give phase-protection from close
encounters with Neptune, The 2/3 resonance is very complex

and stable only at small amplitude of libration. The overlapping -

secular resonances at 36 and 41 AU give rise to large increases
in the eccentricity, and therefore to orbits that are very unstable.

Furthermore, we integrate numerically the motion of the first
five Kuiper belt abjects, the orbits of which have been recently
temporarily determined, and we analyze their orbital evolution
with respect to resonances. The three objects 19938B, 1993SC,
and 1993R0O are in the 2/3 resonance, and, of these, the first
two have a very regular evolution. Conversely, 1993R0 is cha-
otic, and is expelled from the 2/3 resonance, encountering Nep-
tune after 320 Myr. The object 1992QB1 is very regular and
outside all resonances, Finally, 1993FW is chaotic, due io the
4/7 resonance and to a secondary secular resonance. The eccen-
tricity, however, is limited below 0.2, so that the body does not
encounter Neptune. We stress that, since the orbital elements
of these five objects are very uncertain, our results should be
considered only as indications of possible dynamical evolutions
in the Kuiper belt, © 1995 Academic Press, Inc.

1. INTRODUCTION

The Kuiper belt is nowadays the most fashionable prob-
lem in Solar System science. This is due to the discovery
of new objects beyond Neptune.

The name “Kuiper belt” has been given in honor of
Kuiper, who conjectured that the Sun might be surrounded
by a belt made up of comets and comet-like bodies (Kuiper
1951). However, Kuiper was not the first to discuss the
existence of the belt, and an earlier paper by Edgeworth
(1949) should be mentioned. ‘

Later on, Fernandez (1980) pointed out that the Kuiper
belt could be the main source of short periodic comets
such as those of the so-called “Jupiter family.” This was
confirmed by Duncan er al. (1988) and Quinn er al. (1990},
although through an artificial model with increased plane-
tary masses which showed that the population of low-
inclination comelts can be refilled only by a flat disk of
quasi-parabolic objects. The Oort cloud would produce
comets with isotropically distributed inclinations.

Several works followed from these first resulis on the
relations between the Kuiper belt and the origin of comets
(see Stern 1993a, for a review).

It is now generally accepted that low-inclination comets .
come from the Kuiper belt, although a recent paper by
Zheng et al. (1995) rehabilitates the Oort cloud, showing
that it also could produce a superabundance of comets on
prograde low-inclination orbits.

The problem is to understand how comets are trans-
ferred from quasi-circular orbits in the Kuiper belt to
planet-crossing orbits with large eccentricity. In the outer
part of the belt (a > 1000 AU} external perturbations exist
such as those due to the passage of stars or molecular
clouds (Festou et af. 1994, Duncan ef al. 1987); in the inner
part only the perturbations given by the giant planets can
produce retevant effects. The new objects which have been
recently discovered beyond Neptune belong to the inner
part of the belt. Then the question arises whether thesc
objects are in stable or unstable orbits with respect to
planetary perturbations. In particular, are they potential
future comets or rather stable asteroid-like members of
the Solar System?

The investigation of the dynamics in the inner part of
the Kuiper belt is quite new, and most of the results have
been obtained by pure riumerical integrations of test parti-
cles. The first work was by Torbett and Smoluchowski
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(1990), who integrated a number of fictitious objects during
a time-span of 10 Myr and found that most of those with
a perihelion distance smaller than 45 AU have a positive
Lyapunov exponent (of about 1 Myr).

The papers by Holman and Wisdom (1993) and Levison
and Duncan {1993) can be considered as a relevant upgrade
of Torbett and Smoluchowski’s work. By using fast sym-
plectic integrators, these authors could investigaie the dy-
namical behavior of thousands of test particles over, re-
spectively, 2 X 10% and 10Y vears. Both teams found that
the dynamics of orbits with a < 45 AU is very complex:
there are both regions with stable motion over the entire
integration time-span and regions with unstable behavior
which leads to Neptune-crossing orbits. Unfortunately,
they did not try to explain this structure, so that one has
the feeling that the phenomena have not been completely
understood yet. Nevertheless, these papers provide a huge
amount of information; in particular, Holman and Wisdom
report the maximal values of the eccentricity and the incli-
nation for each test particle. These two papers inspired us
in doing our present study; we will make reference to them
and report their main results in Figs. 4 and 9.

Still among the numerical works, one should mention
the recent papers by Levison and Stern (1995), in which
an extensive exploration of the stability of orbits in the
2/3 resonance with Neptune is carried out, and by Malhotra
(1995a), about capture of Kuiper belt bodies into reso-
nances during the early phases of the Solar System. More-
over, while we were revising this paper, a new preprint by
Duncan ef al. (1995) appeared, which is a relevant exten-
sion of the previous Levison and Duncan (1993) numerical
explorations. In addition, we received a new preprint by
Malhotra (1995b), showing Poincaré sections of the dy-
namics in mean motion resonhances with Neptune, com-
puted in the framework of the planar circular three-
body problem.

On the branch of analytical studies, the location of secu-
lar resonances (i.e., the resonances among the precession
rates of the orbits of Kuiper belt objects and of the giant
planets) has been first investigated by Heppenheimer
(1979), in the framework of the linear theory, and later
improved by KneZevi¢ et al. (1991). Their main result is
that the Kuiper belt is quite empty of secular resonances,
in contrast to the asteroid belt.

For mean motion resonances, Message (1958, 1959),
Schubart (1964), and Beaugé (1994) investigated the dy-
namics in the outer ones in the framework of the restricted
three-body problem, but they made no attempt to apply
their analysis to the real case of the Kuiper belt.

In the present paper we explore the specific resonant
structure of the Kuiper belt. Our aim is to understand
completely the pictures given by Holman and Wisdom
(1993) and by Levison and Duncan (1993) and to be able
to foretell the distribution of the objects which will be
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surely found in great number in the inner Kuiper belt. The
study is hmited to @ < 100 AU since, outside, planetary
perturbations are negligible.

In Section 2 we compute the location and the amplitude
of mean motion resonances and investigate their long-term
dynamical effects. In Section 3 we study the dynamical
behavior of the secular resonances found in KneZevi€ et al.
{1991). Non-resonant orbits are discussed in Section 4.

Moreover, we study the dynamical nature of the five
trans-neptunian objects whose orbits have been recently
temporarily determined, and we locate them with respect
to resonances. The objects 1993R0, 1993SB, and 1993S8C
are discussed in Section 2.2, since they are in the 2/3 reso-
nance with Neptune, like the planet Pluto; conversely,
1992QB1 and 1993FW are discussed in Section 4 since their
evolution is not permanently dominated by resonances. We
stress, however, that the orbital elements of all Kuiper belt
objects are, up to now, not precisely known, so that ovr
integrations show some possible dynamical evolutions
within the Kuiper belt, rather than the “real” behavior of
the newly discovered bodies. We report in Table I the
orbital elements assumed as initial conditions for the inte-
grations.

Resonances are not, a priori, regions of unstable and
chaotic dynamics; a spectfic study must be done in order
to determine their dynamical nature. In particular, we will
show that some mean motion resonances stabilize the long-
term evolution, since they provide the mechanisms of pro-
tection from Neptune encounters. It is not astonishing,
then, that three of the five objects above are in the 2/3
resonance with Neptune.

In the present study, both analytical and numerical tools
are used. By perturbation theory, we compute the width
of mean motion resonances and build up models for a
global view of the long-term dynamics inside mean motion
resonances and secular resonances. In Sections 2, 3, and
4, we discuss the results of our analytical computations
and their astronomical implications. The celestial mechan-
ics part of our work is described in Section 5; this section
can be skipped by all those who are not interested in the
mathematical developments of the theory. Moreover, in
addition to the analytical computations, we have per-
formed several numerical integrations of evolution of or-
bits in the Kuiper belt, taking into account the four giant
planets of the Solar System. This has been done in order
to check our analytic results and to study the evolution
of the orbits of the five trans-neptunian objects. For the
numerical simulations we have used the symplectic inte-
grator designed by Levison and Duncan (1994), which is
based on the original algorithm by Wisdom and Holman
(1991), but is in the public domain. This program is well
done, well documented, and very fast and precise. Unfortu-
nately, the version of the program which is in the public
domain cannot handle planetary close encounters; how-
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TABLE 1
Table of Initial Conditions

Object a (AU e i(%) w (%) Qe M (%) Epoch Source
1992 QBI1 43.7638298 0.0682194 221151 16.89418 359.41255 346.74074 1993 Ang. 1.0 M.P.C. 22504
1993 FW 43.9084197 0.0405841 7.73665 8.21749 187.91448 353.07070 1994 Feb. 17.0 M.P.C. 23240
1993 RO 30.6956195 0.2046118 3.72341 184.52897 170.30328 358.17942 1994 Sept. 5.0 M.P.E.C. 1994.R06
1993 SB 39.4213949 0.3213859 1.92850 79.01471 354.81023 318.99486 1994 Sept. 5.0 M.P.E.C. 1994-806
1993 SC 39.4708367 0.1795353 5.16078 319.22139 354.64420 33.90431 1995 Mar. 24.0 M.P.E.C. 1995-C16

ever, it is adequate for the goals of this paper. Indeed, we
are interested here in the mechanisms for transporting
Kuiper objects to Neptune and not in the further evolution
of their orbits, dominated by encounters.

2. MEAN MOTION RESONANCES IN THE
KUIPER BELT

The location of mean motion resonances can be very
simply computed according to Kepler’s third law. It is much
more difficult to determine the width of the resonances,
and this needs some tools of analytic celestial mechanics,
The results are summarized in Fig. 1, which gives the loca-
tion and width of the main mean motion resonances with
Neptune and Uranus on the a—e plane between 30 and 100
AU. The computation has been done in the framework of
the circular restricted three-body problem. The masses of
the non-resonant planets have been added to that of the
Sun. The inclination of the Kuiper belt bodies is assumed
to be zero.

The n/m resonances with Neptune are denoted by the
label Nr/m; those with Uranus by Un/m. For each reso-
nance, the vertical line traces its location and the diamond-
like curves delimit the width. Continuous curves refer to
resonances with Neptune, while dashed curves refer to
those with Uranus.

The two bold lines denote Neptune-crossing orbits and
Uranus-crossing orbits with perihelion distances of 30.11
and 19.22 AU, respectively. The dotted line denotes a
perihelion distance equal to 32 AU, where the effects of
close encounters with Neptune are observed to become
relevant in the numerical integrations.

However, an object at the center of a mean-motion reso-
nance with Neptune is phase-protected from close encoun-
ters with the planet. This is the reason the lines denoting
mean motion resonances with Neptune are plotted up to
the Uranus-crossing limit. Orbits in mean motion reso-
nances with Neptune are not protected from Uranus close
encounters, For the same reason, the mean motion reso-
nances with Uranus are only plotted up to the Neptune-
crossing limit.

The width of the mean motion resonances with Neptune
changes abruptly in correspondence to the Neptune-cross-

ing limit. Indeed, resonant orbits with large amplitudes of
libration can enter into collision with the planet. Therefore,
the non-encountering condition gives a constraint on the
amplitude of libration of resonant orbits, so that the width
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FIG. 1. The location and the width of mean motion resonances with
Neptune and Uranus in the Kuiper belt between 30 and 100 AU. Sce
text for description.
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of the resonant region which is stahle with respect to Nep-
tune encounters shrinks with increasing eccentricity. We
will give in Section 5 more details on the computation
of the resonant width both above and below the planet-
crossing line.

Figure 1 shows the importance that mean motion reso-
nances have in structuring the Kuiper belt. In particular,
in the inner part of the Kuiper belt (a < 45 AU), there
are several resonances with non-negligible width. Among
them, the sequence of resonances of order one, i.e., 2/3,
3/4, 415, 5/6, converges toward the orbit of Neptune. These
resonances overlap only partially, near the Neptune-cross-
ing threshold. The overlap of mean motion resonances
usually indicates large scale chaos; in this case this should
happen only in a region which is already strongly perturbed
due to close Neptune encounters.

Bevond 45 AU, the low-order mean motion resonances
are more separated. Moreover, apart from the 1/2, 2/5
and 1/3 resonances, they are very thin so that the volume
occupied by them in the small eccentricity part of the
diagram is negligible. In short, below 45 AU the Kuiper
belt is strongly sculptured by the presence of mean motion
resonances, while at a > 45 AU it is essentially non-reso-
nant. Apart from these considerations, Fig. 1 does not
provide any indication about the stability of the dynamics
in mean motion resonances. One has to investigate the
effects of Neptune’s eccentricity and, especially, of the
secular changes of the planetary orbital elements.

2.1. Dyrnamics in the Inner Order-One Resonances

This section is devoted to resonances 3/, 4/3, and 5/6
with Neptune which dominate the Kuiper beit at ¢ < 37
AU. These resonances are characterized by mostly regular
motion at moderate eccentricity. As an example, we show
in Fig, 2 the result of the numerical integration of a fictitious
body in the 5/6 resonance with initial eccentricity e = 0.1,
perturbed by the four giant planets. The four panels show
the evolution over 10 Myr of the semimajor axis, of the
critical angle of the resonance ¢ = —5Ay + 6A — (X and
An are the mean longitudes of the bedy and of Neptune,
respectively, and wdenotes the body’s longitude of perihe-
lion), of the eccentricity, and of the inclination. There is
very regular behavior of the orbital elements, which change
quasi-periodically with time; such a regularity suggests that
the orbit must be stable over a time scale much longer
than 10 Myr. We stress that the eccentricity is so large that
the perihelion distance becomes smaller than 29.8 AU.
Nevertheless, there are never close encounters with Nep-
tune, since the body is deeply inside the mean motion
resonance, the critical angle o librating with small ampli-
tude {*+30°) around the stable resonant value o = 180°.
The eccentricity oscillates between 0.09 and 0.12; we have
checked that this oscillation is coupled to the circulation of
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FIG. 2. The time evolution of the heliocentric orbital elements of a
fictitious orbit in the 5/6 resonance with Neptune. The critical angle of
the 5/6 resonance is o = ~3Ay + 64 — @.

@ — Wy, W being the longitude of perihelion of Neptune.
Orbits with initially smaller eccentricity are characterized
by faster oscillations of e. The inclination changes from 0
to 2.5° with respect to the invariable plane of the outer
Solar System,; its oscillation ts coupled with the circulation
of O — Oy, which are the longitudes of the nodes of the
body and of Neptune, respectively.

We have found numerically the same kind of behavior
as in Fig. 2 for orbits in the 4/5 and 3/4 resonances. We
have therefore elaborated on a theoretical model to explain
such a generalized stability. The main point is that in a
mean motion resonance of order one, such as the 5/6,
4/5, and 3/4 resonances, the longitude of perihelion @ must
circulate clockwise (i.e., @ << 0): the opposite direction
with respect to planetary perihelia; this circulation is very
fast if the eccentricity has small to moderate values (see
Section 5). Therefore, no secular resonance can occur be-
tween the motions of the perihelia of the body and of the
perturbing pianets, at small eccentricity. As a consequence,
the eccentricity oscillates fast and with small amplitude.
In order to emphasize this fact, we plot in Fig. 3 the secular
evolution of the eccentricity with respect to the circulation
of @ — wy. This figure has been computed under the
assumption that only Neptune is present with eccentricity
en = 0.0147. In addition, the o-libration in the 5/6 reso-
nance is assumed to be small, and the inclination i is as-
sumed to be 0. As is easily seen, the phase space is foliated



326

0.4

0.3

o
m -
(9]
s
o
o
o)
0.0 100 200 300
p8
FIG. 3. The secular evolution of the eccentricity as a function of

1 = ™ — wy for orbits deeply inside the 5/6 mean motion resonance
with Neptune. The phase space is foliated with slightly distorted invariant
tori, apart from the region around e = 0.2, where w — @y librates.

with slightly deformed invariant tori at small eccentricity
(e < 0.2}, where the fast rotation of @ — wy forces only
small amplitude oscillations of the eccentricity. Ate = 0.2,
w and wy are in resonance and & — @y librates. The same
is true in the 4/5 and 3/4 resonances, where the resonance
corresponding to the libration of w — wmy moves to
larger eccentricity.

All our theoretical and numerical computations assess
the great regularity of the mean motion resonances of
order one in the inner Kuiper belt; nevertheless, some
chaotic regions can always be found, for example, for orbits
with large amplitude of o-libration or close to some possi-
ble secondary resonance between the period of libration
of o and the period of circulation of &7 — @y . The dominant
dynamical character of these mean motion resonances is
regularity; however, the existence of some chaotic and
unstable resonant orbits cannot be excluded.

Coming now to the numerical results by Levison and
Duncan (1993), we reproduce in Fig. 4 their diagram con-
cerning the stability times of orbits with initial eccentricity
e = 0.1 in the Kuiper belt. Evident “stability peaks” appear
between 34 and 40 AU. In light of our results, the peaks
ata = 35 AU and a = 36.5 AU are very probably associated
with the 4/5 and 3/4 resonances. The small peak of stability
up to less than 10 Myr at ¢ = 34 AU is evidently associated
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with the 5/6 resonance. Why is the stability time so short?
The example reported in Fig, 2 is stable up to af least 10
Myr. We guess that this is simply an artifact of the method
that Levison and Duncan used to compute the “stability
times.” Indeed, they wrote that “ecach particle was inte-
grated for 1 Gyr unless it was removed because it either
crossed Neptune’s orbit or suffered a close approach to
Neptune.” However, particles in the 5/6 resonance can
cross the orbit of Neptune safely, without running the risk
of any close encounter with the planet. In this case, there-
fore, we suspect that the real stability time has been largely
underestimated by Levison and Duncan.

From Levison and Duncan’s results (Fig. 4), two addi-
tional thinner stability peaks appear at a = 37.7 AU and
a = 383 AU, which are probably connected with the
53/7 and 7/10 mean motion resonances with Neptune.
Our numerical tests confirm that the 5/7 resonance has
very regular orbits. A further double stability peak is
present at 39-39.5 AU this is probably associated with
the 2/3 resonance. The dynamics in the 2/3 resonarnce is
much more complicated, so that a full section must be
devoted to the discussion of this case.

2.2. Dynamics in the 2/3 Resonance

The long-term dynamical evolution in the 2/3 resonance
is complex since, inside of the resonance itself, some secular
resonances are present.

In the asteroid belt, secular resonances can be found
inside many mean motion commensurabilities. In particu-
lar, the overlap of secular resonances inside mean motion
commensurabilities is the basis of the origin of most of
the Kirkwood gaps (Wisdom 1985, Morbidelli and Moons
1993, Maoons and Morbidelli 1995).
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F1G.4. From Levison and Duncan (1993} the stability times of orbits
with initial eccentricity e = 0.1, as a function of the semimajor axis. See
text for comments.
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The order-one resonances analyzed in the previous sec-
tion are characterized by a very stable dynamics since secu-
lar resonances are not present at small eccentricity.

In the case of the 2/3 resonance, conversely, the Kozai
resonance and the v3 resonance can be found, if the pertur-
bation of the four giant planets is taken into account.

The Kozai resonance concerns the libration of the argu-
ment of perihelion . Everybody knows, since the numeri-
cal integration by Williams and Benson (1971}, that the
argument of perihelion of Pluto librates. Nacozy and Diehl
(1974, 1978) and Kozai (1985) computed analytically the
evolution of its eccentricity and inclination coupled with
the w-libration. Here, we have computed the location and
the width of the Kozai resonance for orbits which are
deeply inside the 2/3 commensurability, i.e., such that the
critical argument o = —2Ay + 3A — w librates with smali
amplitude around the stable resonant value o = 180°.

Figure 5 gives the results on the e—i plane; the inclination
is measured with respect to the invariable plane. The value
of the semimajor axis is that of the exact 2/3 resonance.
The present position of Pluto is marked by a circle.
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FIG. 3. Phase space of the secular dynamics in the 2/3 resonance
with Neptune. The picture is computed for orbits with small amplitude
of o-libration, It shows the Kozai resonance (the center line denoting its
location and the side lines its width) and the 143 resonance (the bold
line denoting its location). The dashed curves denote the levels of the
z-componet of the angular momentum. The two asterisks mark the
present position of 19938C and 1993SB. the circle marks the present
position of Pluto, and the cross marks the present position of 1993RO.
However, 1993RO librates with large amplitude, so that its position with
respect to the Kozai resonance must be considered only as qualitative.
The inclination is measured with respect to the invariable plane.
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The effect of the Kozai resonance is to force the oscilla-
tions of e and i; the eccentricity and the inclination are
coupled and must evolve along one of the dashed lines
plotted in Figure 5, which are the level curves of the
z-component H of the angular momentum.

The v secular resonance oceurs when the precession
rate s of the body’s nodal longitude {} is equal to the
average precession frequency sg of Neptune’s node {ly.
The effect of the 15 resonance is to pumip up the inclination
of the resonant body. The location of the g resonance
inside the 2/3 commensurability is indicated by a bold line
in Fig. 5. The w4 resonance is located at very small eccen-
tricity and is well separated from the Kozai resonance. We
have numerical evidence, however, that this separation
becomes narrower with increasing amplitude of o-libration
inside the 2/3 commensurability; indeed, the g resonance
moves to larger eccentricity and the Kozai rescnance
moves to smaller eccentricity. This can explain why, in
their recent paper on the origin of Pluto, Levison and Stern
(1995) found numerical evidence that strong instability
occurs when the amplitude of libration of o is large.

In Fig. 5 we mark by asterisks the presently assurmed
position of the Kuiper belt objects 19935C and 1993SB.
These two objects are in the 2/3 resonance and their ampli-
tude of g-libration is small, as we have checked in a 500-
Myr integration {Figs. 6 and 7, respectively). Therefore,
for these two bodies, Fig. 5 is quite accurate, and shows
that 19938C and 19935B are protected from both the Kozai
resonance and the 1z resonance, provided their orbital
elements are confirmed. As a consequence, a very regular
behavior is expected. As seen in Figs. 6 and 7, the evolution
of their semimajor axis, eccentricity, and inclination looks
smooth and quasi-periodic. In order to check the position
of the two objects with respect to the 1 and to the Kozai
resonances, the first 30 Myr of the evolution of the resonant
critical angles are magnified. The critical angle of the w3
resonance, i.e., {1 — ggt = () — £} circulates with a period
of about 4 Myr in both cases, which implies that the reso-
nance is far away. The critical angle w of the Kozai reso-
nance circulates with negative derivative in the case of
19938C and with positive derivative in the case of 19938B;
this proves that the former is on the left-hand side of the
Kezai resonance while the latter is on the right-hand side.
This confirms the theoretical result shown in Fig. 5.

Still in Fig. 5, a cross denotes the assumed “position”
of 1993R0O, which is also in 2/3 resonance with Neptune.
However, from our numerical integration (Fig. 8), the am-
plitude of o-libration of 1993RO is quite large while the
location of the Kozai resonance in Fig. 5 has been com-
puted in the limit of small o-libration. Figure 5, then, must
be considered only as qualitative in this case; in particular,
the Kozai resonance should be somewhat closer to the
object than Fig. 3 shows. The long-term evolution of
1993RO obtained by numerical integration is strongly cha-
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FIG. 6. The time evolution over 500 Myr of the heliocentric orbital
elements of 19938C. Initial conditions are those reported in MPEC1995-
C17. The two top pictures show the magnification over 30 Myr of the
motion of the argument of perihelion w and of 13 = {1 — {}y. Moreover,
the critical angle o of the 2/3 resonance is defined as —2Ay + 34 — =
See text for comments.

otic. The behavior of the eccentricity and of the inclination
is very irregular. This is due precisely to the Kozai reso-
nance. Indeed, the object is temporarily trapped by the
Kozai resonance as the evolution of the argument of peri-
helion shows: there are temporary librations around w =
0°, 180°%, or 90°. The amplitude of o-libration increases
along the chaotic evolution of the orbit, When ¢ librates
with large amplitude, the »jg resonance is crossed, causing
large jumps in the inclination. From 200 Myr, the object
is temporarily ejected from the resonance (o circulates).
At these times, 1993RO is no longer protected from close
encounters with Neptune. At 320 Myr a strong close en-
counter occurs, so that the integration is stopped.
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The fact that in this integration 1993RO is eliminated
in 320 Myr implies nothing for its real evolution. Since the
orbit is strongly chaotic, the integration is not predictive.
The real object could evolve in a different way and on
different time scales. Moreover, it is possible that future
improvements of its orbital elements, which are still very
uncertain, will put 1993RQ in the stable region of the 2/3
resonance. As a matter of fact, in the most recent preprint
by Duncan et al. (1995) new orbital elements are taken
into account (the eccentricity being decreased to 0.12),
which make 1993RO stable over 1 Gyr.

In conclusion, the 2/3 resonance with Neptune has a
very complex dynamics, since both regular and chaotic
orbits coexist. The larger the amplitude of o-libration,
the more irregular the dynamics becomes (see also Levi-
son and Stern 1995, Duncan et af. 1995). Indeed, if the
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FIG. 7. The same as Fig. 6 for 19935B. Initial conditions are taken
from MPEC1994-506.
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FIG.8. The time evolution over 320 Myr of the heliocentric elements
of 1993R0O. Initial conditions are taken from MPEC1994-R06. Again,
mg=0— Quand o= —2Ay + 34 — @ The object is ejected by a close
encounter with Neptune at 320 Myr. See text for comments.

amplitude of o-libration is very large, the 15 resonance
and the Kozai resonance join together, and their interac-
tion gives rise to large scale chaos, as seen in the case
of 1993RO.

As a confirmation of the coexistence of both regular and
chaotic motion within the 2/3 resonance, note that Levison
and Duncan (1993} found a double peak of stability up to
1 Gyr, separated by an instability gap around 39.5 AU
(Fig. 4); this is possibly due to the fact that some of the
2/3 resonant orbits, probably those with large amplitude
of g-libration, escape (see also Duncan et al. 1995). More-
over, Holman and Wisdom (1993) found, in correspon-
dence to the 2/3 resonance, orbits whose eccentricities
become larger than 0.2 as well as orbits whose maximal
eccentricities are bounded below 0.1 (their picture is repro-
duced in Fig. 9).
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2.3. Dynamics in the Quter Mean Motion Resonances

The outer mean motion resonances (¢ > 45 AU) are
much less important than the inner ones for the structure
of the Kuiper belt. On one hand, since Neptune is far
away, these resonances do not play a fundamental role in
protection from close encounters with the planet. On the
other hand, they do not force large changes in the eccentric-
ity of resonant bodies, so that they cannot be considered
as active transport channels from the Kuiper belt 1o the
planetary region.

The 1/2 resonance with Neptune has the particularity
that the critical angle of the resonance o = —Ax + 2A —
@ can librate not only around o = 180°, but also around
two symmetric values o = 180° = Ao, the value of Ao
depending on the eccentricity. In the framework of the
planar circular three-body problem, the typical resonant
phase space is that shown in Fig. 10 with respect to the
coordinates k = ¢ cos o and A = e sin ¢. Two islands of
libration appear, which are symmetric with respect to the
x-axis, and which are included in a large island of libration
around o = 180°. The equilibrium at ¢ = 180° is unstable,
This result for the 1/2 resonance is not new, and we reler
to the paper by Schubart (1964) and to the recent one by
Beaugé (1994) for further details. We have found in our
study that all resonances of the kind 1/# have axisymmetric
islands of libration. Note that we have always considered
the largest island of libration for the determination of the
widths of the 1/a resonances in Fig. 1.

The presence of two axisymmetric islands inside the
large island of libration and the existence of a separatrix
surrounding them give rise to some local chaos inside these
mean motion resonances. As an example, Fig. 11 shows
the evolution of o for a fictitious body in the 1/2 resonance:
the orbit is temporarily captured into one of the two axi-
symmetric islands; thus, the behavior of the eccentricity is
somewhat irregular,

Orbits with initially very large amplitude of o-libration
in the large island show some chaotic behavior as well,
with temporary expulsion from the 1/2 resonance and circu-
lation of o.

Apart from these cases of “local chaotic behavior,” we
have found no numerical evidence of wildly unstable mo-
tion nor of large scale chaos in the 1/2,2/5, or 1/3 resonances
with Neptune, for moderate eccentricity (e < 0.3)—
nothing similar to what happens in the 3/1 and in the 5/2
resonances with Jupiter in the asteroid belt. The qualitative
reason for this is that the planetary perturbations in this
outer part of the belt are weak, so that the longitude of
perihelion = and the longitude of node (2 move very slowly,
much more slowly than those of the planets. Therefore,
no low order secular resonance can occur inside these mean
motion commensurabilities.

This can be seen also in Holman and Wisdom’s paper
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FIG. 9. From Holman and Wisdom (1993): the maximal eccentricity of test orbits as a function of the semimajor axis. For each semimajor axis
six test particles were started at different longitudes. The points denote the maximal eccentricity attained by each test particle during the course

of the integration. The vertical bars mark the minimum of the six values.

(1993) {see Fig. 9), where the maximal eccentricity of ini-
tially circular orbits in the 1/2 resonance is found to be
less than 0.15.

3. SECULAR RESONANCES

Secular resonances can be found outside mean motion
commensurabilities, and this section is devoted precisely
to exploring the dynamical behavior in these cases.

For the location of secular resonances, Knezevic et al.
(1991) pointed out that in the range 40-42 AU the 14, the
1z, and the 147 secular resonances can be found and the
convergence of the 17, 1, and 147 resonances at 36 AU,
at the limit of the region covered by their investigation.
The vy secular resonance occurs when the precession rate
g of the body’s longitude of perihelion w is equal to the

precession frequency gg of Neptune’s longitude of perihe-
lion wy; the v, resonance occurs when g is equal to the
precession frequency g; related to Uranus’ perihelion wy;
the v»y; resonance is given by s = s;, s and s, being the
nodal precession frequencies of the body {) and of Uranus
Qy, respectively; the v3 resonance is the corotation with
the node of Neptune (Section 2.2).

Holman and Wisdom (1993) found large increases in
both the eccentiicity and the inclination between 40 and
42 AU and a large increase in the eccentricity between 35
and 36 AU (Fig. 9).

We have elaborated two simple models, taking into ac-
count the perturbations of the four giant planets, to show
the global portrait of the secular dynamics in the »y and
vigresonances at 4 = 41.5 AU and a = 40 AU, respectively
(Fig. 12). The vz model shows that the eccentricity is
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FIG. 10. The phase space of the 1/2 mean motion resonance with
Neptune in the framework of the planar circular problem. Note the two
axisymmetric islands of libration. The critical angle of the resonance is
o= —Ay + 24 — @ The value of N — §, is equal to —2.08, measuring
a in AU (see Section 5).

pumped up from 0 to 0.2 by the libration of the critical
angle of the resonance w — gt ~ w — wy. Ate = 0.2,
close encounters with Neptune can occur, since the secular
resonance does not provide any mechanism of protection
from close approaches. The v model shows that the incli-
nation is pumped up from 0° to about 10° by the libration
of the critical angle of the resonance & — syt ~ ) — Qyu.
However, these models are computed in the approximation
that each resonance is isolated; in particular, in the vy
model the inclination is assumed to be 0°, and in the »y
model the eccentricity is assumed to be 0. This is evidently
a very crude approximation. Indeed, the two secular reso-
nances coexist in the region 40-42 AlJ, and their interac-
tion cannot be neglected. The interaction of resonances
gives rise to large scale chaos, and predictive analytic mod-
els of the dynamical behavior of resonant orbits can no
longer be developed. Moreover, the secondary secular res-
onance » + 3, i.€., the one where g + 5 = gg + 53, comes
into play, complicating the dynamical picture even more.
This three-resonance interaction is something which is
quite new in celestial mechanics: in the asteroid belt, secu-
lar resonances are well separated, and each of them can
be studied by predictive analytic models (Morbidelli 1993).
The only exception is the intersection of the »s and v,
resonances at large inclination.

We have performed some numerical integrations of test

331

0.1

1 T
= e A T I
O. —_
e fi, 17N ee 311 e 6 ]
Y ht T e *W ﬁ g 'n"‘
= m;é‘:}aﬁf}ﬂ’f@%:ﬁ,ﬁ :‘*1:3:; s %‘.g':{ e % 5{‘? ¢
plags.S FIRPNC R s e DA Lol i ShAg V)
M eI e S
s uk;ghwu»‘,, T
gy et B S R P .‘4}“‘ Ao P 3‘\3&3‘; Lo
e 3E Ut Il E Bt Ay T "y
A Ry % T R
4 A ¥y + ., . y
ot o ’* :;ﬁ .ﬁ"‘?’.'% ¥
AR e
S Gt d
& :
=]
Q Hix o
Y
1= A
ity
S ¥ 1
e R e ot s A Y
5 éuﬁtii‘o’y%ﬁ:‘ﬁ"”'ﬁ 1 ; oy St o oy
R Lyt 4 i e R
P e At gt 21
Q
Ou l ! f T T IR T T T |
0.0 5 10
t {Myr)
FIG.11. The time evolution of the heliocentric elements of a fictitious

particle in the 1/2 resonance with Neptune. The critical angle ¢ =
—Ay + 24 — w is temporarily captured in axisymmetric libration. See
text for details.

objects in the region 40-42 AU, over a 40 Myr timespan.
All confirm the great chaotic character of this region, with
large increases in both the eccentricity and the inclination
and short stability time as found by Holman and Wisdom
{1993) and Levison and Duncan (1993). Close encounters
with Neptune occur very rapidly. As an example, Fig. 13
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FIG. 12. (Left) the phase space of the 1 resonance, computed at

a = 41.5 AU and { = (. The label 3 denotes the critical angle of the
resonance @ — wy. (Right) the phase space of the »3 resonance, com-
puted at 2 = 40 AU and ¢ = 0. The label 15 denotes the critical angle
of the resonance ) — (.
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The orbit is strongly chaotic due to the copresence of several secular
resonances, Here 1y denotes w — oy, g denotes (3 — Qy, and 2 + 13
denotes w + 1 — wy — Oy,
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FIG. 14. Time evolution of a fictitious object in the 36 AU region.
The evolution is chaotic due to the overlapping 5 and 14 secular reso-
nances. Here # denotes w — wy and i denotes = — @y,.

shows the evolution of the eccentricity, of the inclination,
of the semimajor axis, and of the critical angles of the
secular resonances g, vz, and vy + vy for a test particle
with initial semimajor axis ¢ = 40.4 AU. The critical angle
of the v; resonance librates around (° and the critical angle
of the 1y resonance librates around 18(°, as predicted by
the models in Fig. 12. However, due to the strong resonance
interactions, the dynamical evolution is not regular, and
the critical angles change their libration amplitude and
temporarily circulate, As a consequence, the eccentricity
and the inclination are not guasi-periodic with time. At
the end of the integration span, strong close encounters
with Neptune occur, as one can deduce from the jumps of
the semimajor axis.

In the region at 35-36 AU, the interactions between the
g and 14 secular resonances give rise to large scale chaos
and prevent the definition of a predictive analytic model.
Figure 14 shows the evolution of a test particle with initial
a = 36 AU. The behavior of the eccentricity is very irregu-
lar. The critical angle of the u; resonance librates at the
beginning of the integration, which means that the body
is in the 24 resonance. Then it circulates very quickly, while
the critical angle of the 1, resonance slows and eventually
librates temporarily, which shows capture into the 1 reso-
nance. The overlap of these two secular resonances is re-
sponsible for chaos. At the end of the 20-Myr integration
timespan a very strong encounter with Neptune occurs.
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4. NON-RESONANT ORBITS AND THE EVOLUTION
OF 1992081 AND 1993FW

This section deals with orbits which are not in the secular
resonances or in the unstable parts of mean moticn com-
mensurabilities discussed above. In these cases the eccen-
tricity does not increase much, as can be checked from
Holman and Wisdom’s numerical result (Fig. 9). This is
due to the absence of resonant perturbation effects.

In the inner part of the Kuiper belt, however, non-reso-
nant orbits are not protected from close encounters with
Neptune, so that they turn out to be strongly unstable. In
Levison and Duncan’s result (Fig. 4) one notes that, apart
from the resonant stability peaks, the stability time in-
creases from 10° years at 34-35 AU to 107 years at 42 AU
for orbits with initial eccentricity e = (.1. This is due to
the fact that, the larger the semimajor axis, the larger is
the perihelion distance; thus, the typical lifetime before a
strong close encounter with Neptune increases. Similarly,
if the initial eccentricity is (.01, the stability time increases
from 10° years at 32.5 AU to 10° years at 37 AU.

As mentioned in Section 2.2, the three bodies in the
inner Kuiper belt are all in mean motion resonance with
Neptune. Conversely, 19920QB1 and 1993FW, which have
a > 43 AU, cannot be associated permanently with any
mean motion or secular resonance. The results of a 500-
Myr numerical integration of the latter two bodies are
plotted in Figs. 15 and 16.

The evolution of 1992QB1 seems to be quite regular.
The semimajor axis oscillates between 43.6 and 44.3 AU.
The eccentricity is modulated with a period of about 70
Myr. Such a modulation is associated with the slow circula-
tion of the eritical angle of the secondary secular resonance
vg + vig, with the maxima corresponding to w + ) — wy
— {y = 0° and the minima corresponding to 180°. The
inclination also has a very regular evolution and the long
period modulation associated with the vy + »g term is
also easily seen.

Starting with the initial conditions in Table I, the evolu-
tion of 1993FW is, by contrast, strongly irregular, especially
for the behavior of the eccentricity and of the inclination.

The main reason for such irregularity seems to be the
proximity of the 4/7 resonance with Neptune. From the
picture of the evolution of the critical angle o of the 4/7
resonance (Fig. 16), the object is temporarily captured in
libration. At the same time, the argument of perihelion
librates around %, indicating the existence of the Kozai
resonance inside the 4/7 commensurability. As usual, the
Kozai resonance couples the evolution of the eccentricity
and of the inclination: the inclination decreases in corre-
spondence with the eccentricity peaks.

Moreover, the critical angle of the vy + »3 resonance
also shows transitions from slow circulation to libration
between 100 and 200 Myr, when the object comes out of
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FIG. 15. The time evolution over 300 Myr of the heliocentric orbital

elements of 1992QB1. Initial conditions are taken from MPC22594. Note
the long periodic oscillation of e and / in phase with the circulation of
w+ pg = w+ )~ @y — Oy See text for comments.

the 4/7 resonance. Between 200 and 300 Myr there is a
change of behavior in the eccentricity, which is possibly
due to temporary librations in the 4/7 resonance; the distri-
bution of dots in the evolution of o is somewhat more
dense around the stable values of libration at 60°, 180° and
300°. From 300 Myr onward, the evolution of the orbit is
quite regular.
From these considerations we can conclude that:

(1) 1993FW is very close and even temporarily inside
the secondary secular resonance g + vg.

(2) The object is very close and temporarily inside the
4/7 mean motion resonance with Neptune, where the Kozai
resonance is also found.

(3) The cause of irregularity may be the interaction
among the secondary secular resonance, the mean motion
resonance, and the Kozai resonance.

Finally, the eccentricity never exceeds 0.2, so that the
object never comes close to Neptune, at least during the
integration timespan, as can be noted from the stable evo-
lution of the semimajor axis. Moreover, if our interpreta-
tion of the origin of the chaotic motion is correct, we should
expect to find a very thin and localized chaotic layer, so
that future improved determinations of 1993FW’s orbit can
put the object in a regular region. Indeed, in the preprint of
Duncan et af. (1995) the assumed elements of 1993FW are
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FIG. 16. The time evolution aver 500 Myr of the heliocentric orbital
elements of 1993FW, Initial conditions are taken from MPC23240. Here
vy + wg denotes w + ) - wy — Iy and & is the critical angle of the
4/7 mean motion resonance with Neptune, i.e., (—4Ay + 74 — 3@)/3,
See text for comments.

slightly different and the body is found to be stable over
1 Gyr.

5. ANALYTICAL TOOLS FOR THE INVESTIGATICN
OF THE KUIPER BELT

This section is devoted to outlining the theoretical ap-
proach followed for the exploration of the dynamics and,
in particular, for obtaining Figs. 1, 3, 5, 10, 12, and 17. All
the tools used here have been developed and used for the
study of the dynamics in the asteroid belt; further details
can be found in Morbidelli and Moons (1993) and Moons
and Morbidelli (1995) concerning mean motion resonances
and in Morbidelli (1993) concerning secular resonances.

Our study in this paper is rough, and we introduce sev-
eral simplifications and assumptions: the aim of this work

MORBIDELLI, THOMAS, AND MOONS

is to outline only the basic features of the dynamics in the
Kuiper belt, without entering into complicated details. A
more technical work will follow.

The starting Hamiltonian is that of a massless body per-
turbed by four planets on given orbits, i.e.,

1 r‘rj)
i | —— — —
j=21,4 ’(|l‘—lﬂ i)

where r is the position of the massless body and r; is the
position of the jth perturbative planet with mass u,; the
mass of the Sun and the gravitational constant are taken
as unity.

The Hamiltonian (1) is divided in several parts, i.e.,

I
%= (1)

H o=+ pdy + pIh + we’ ¥+ w'H o+ Oe, I, (2)
with u denoting generically the mass of the perturbing
planets. ¥ is the Keplerian part —ia; % + w3, is the
Hamiltonian of the planar circular restricted problem,
where the planets are assumed to be on coplanar circular
orbits and the inclination of the small body is neglected;
#th contains all the terms depending on the inclination of
the massless body in the circular restricted problem; % is
the part which is linear in the planetary eccentricities, de-
noted here generically by e”; % is the part which is linear
in the planetary inclinations i'; O(e’, i')* contains all the
terms which are at least quadratic in the planetary eccen-
tricities and/or inclinations and which are neglected in this
theory. We stress that we do not use any expansion in the
eccentricity and inclination of the small body, so that the
quality of the results do not degrade with increasing e and i.

The Hamiltonian (2) is the basis of our theoretical inves-
tigation,

5.1. Mean Motion Resonances

The Hamiltonian (2) is time dependent through the
mean longitudes A; of the planets; then the phase space is
extended, introducing new actions A; conjugate to A;.

Assuming the system to be close to a (p + ¢)/p mean
motion resonance with the j.th planet, we introduce the
cancnical variables

o=ty tr-w s=L-G
aﬁpgqlxj, Ey_9, S5.-G-H,
—p=0ta, Py N=29) g B
g p
L. LPta
A.j*g e T Ajt + TLa
A A

k)
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where L. = Va, G =LV1 — ¢ and H = G cos i are the
actions conjugate to the mean anomaly /, the argument of
perihelion @ and the longitude of the node {3; the mean
longitude A = [ + (} + v = ! + w, where w denotes the
longitude of perihelion.

The Hamiltonian considered in a first step is that of the
planar circular problem, i.e.,

geres = S A+ K+ u¥s, (4)

=14

n; denoting the mean motion of the jth planet. We stress
that no expansion in ¢ is used for the calculation of the
Hamiltonian in (4).

Furthermore, the Hamiltonian is averaged with respect
to the fast angles A; and A.; the resulting Hamiltonian is
integrable, since it depends only on the angle o. Indeed,
the Hamiltonian is independent of ¥ since it does not de-
pend, by construction, on the planetary eccentricities, so
that it is rotationally invariant and reads

gpres — %res(o_’ S,N— Sz) (S)

The study of this Hamiltonian is then a simple mat-
ter. On each surface N — §, = constant the dynamics is
represented by the level curves of the Hamiltonian in a
(o. 8} polar diagram. This can be simply converted into a
(e cos @, ¢ sin ¢} diagram as in Figs. 10 and 17. The value
of the constant N — §, = \/;((p + q)ip — V1 — €% associ-
ates a value of a to each value of e.

The width of the resonance is defined in the following
way. From the unstable equilibrium point (at ¢ = 0 in
Figs. 10 and 17a) stem the two separatrices of the resonance
problem. The orbits between the two separatrices have a
librating o; these are the properly resonant orbits. Along
the o-libration the eccentricity changes and the maximal
amplitude of this change corresponds to the intersection
of the separatrices with the axis ¢ = oy, g being
the value of ¢ at the stable equilibrium points. With this
computation made for each value of N — §,, one gets the
V-shaped limits of the resonant zones, as shown in Fig. 1,
up to the planet-crossing limit.

For order-one resonances, decreasing N — §,, the unsta-
ble equilibrium point disappears before reaching e = {}, so
that the separatrices are no longer defined (see Henrard
and Lemaitre 1983); this is the reason the V-shaped limits
of the mean motion resonance of order-one in Fig. 1 are
not defined all the way down to e = 0.

On a surface N — §, = constant which is above the
planet crossing limit, the resonant phase space changes as
in Fig. 17b. The collision with the planet is a singularity for
the averaged Hamiltonian. However, orbits with librating
o with sufficiently small amplitude never approach the
collisional region, so that they are phase-protected. This

O
—
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esinlag)

esinla)

ecos(a)

FIG. 17. (a} The phasc space of the 5/6 resonance in a case where
collision with Neptune cannot occur, N — 5, = —0.96. (b) The same, but
in a case where colliston with Neptune can occur, N — §, = —0.92,
the bold line denoting collision (the semimajor axis measured in AU).
Librating resonant orbits are protected from collision. The width of the
resonance is computed with respect to the largest banana-shaped librating
orbit. Here ¢ is —5Ay -+ 6A — &
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is not true, conversely, for orbits outside of the resonance,
for which ¢ circulates. The width of the resonance above
the planet-crossing limit is computed referring to the
largest banana-like libration which avoids the planetary
collision. Increasing N — §,, i.e., the eccentricity, only
orbits with smaller amplitude of o-libration are protected.
For this reason, in Fig, 1, the limits of the resonances,
above the planet-crossing limit, shrink with increasing ec-
centricity. Moreover, the equilibrium point at o = 0, which
is unstable in Fig. 17a, becomes stable when the collisional
singularity appears as in Fig. 17b. Orbits librating around
this new stable equilibrium are also protected from plane-
tary collisions. However, we will not refer to these orbits
in the following analysis.

We come now to the investigation of the dynamics instde
mean motion resonances.

In mean motion resonances of order one and at small
eccentricity, the longitude of perihelion w circulates fast
with negative derivative, so that no secular resonances with
the motion of the perihelia of the planets can occur. Indeed,
the time derivative of @ is, in the variables (3), equal to
—i— g ie,

- 6%“:5 _ a%rcs _ a%{es +
aN a8 oG

a%rcs
aH -~

We now show that 93™/a( tends to —o with ¢ — 0.
Indeed, the first term of %, in its expansion in powers of
¢ is, as it is well known, Ce cos o, C being a negative
coefficient. Therefore w contains the term C cos o(de/
d(), where C cos o is positive at the stable equilibrium
o = 180°, Now, de/dG = —G/(eL?), from which our claim
direcily follows.

In order to investigate the secular dynamics forced by
the planetary eccentricities we proceed as follows. First,
action angle variables (4, J) are introduced, such that (5)
becomes independent of , ie., #™(J, N — §;). To be
canonical, this transformation must be extended to o, and
v. The transformation on o, and v is of the form o =
o, — p. (), v = v— p[if), where p, and p, are periodic
functions of . By abuse of notation, in the following we
still indicate as o, and » the new angles «; and +'. The set
of variables (¢, J, a,, §,, v, N) must then be considered
as canonical.

Then the term '3 proportional to the planetary eccen-
tricities is taken into account and written in the new vari-
ables, which gives

H=HS(JIN=-8)+pue'¥(J,v+ o', N-5,). (6)
The term % depends on time through the planetary

longitudes of perihelia, generically denoted here by o'

For simplicity, in Fig. 3 only the perturbation given by

MORBIDELLI, THOMAS, AND MOONS

Neptune is taken into account and Neptune’s perihelion
is fixed (restricted elliptic three-body problem). This is a
quite good approximation, since the perihelion of Neptune
moves very slowly (0.67 arcsec/year). Then, assuming that
there are no low-order resonances between the frequency
of s and that of » (i.e., no secondary resonances between
the period of libration of ¢ and the period of circulation
of »), the Hamiltonian (6) is averaged with respect to .
The integrable Hamiltonian #(J, v+ @', N — §,) describes
the secular evolution of N — §, forced by the motion of
v + @', for a given value of J, i.e, roughly speaking, for a
given value of the amplitude of c¢-libration. Since o is
librating around the stable equilibrium, v + @ is, in aver-
age with respect to , equal to @' — @ — gy, Where stab
denotes the value of o at the stable equilibrium point.
Figure 3 is obtained in the limit J — 0, and therefore
concerns orbits on the stable equilibrium at o = 180°,

In the spatial circular problem the Hamiltonian reads
(Morbidelli and Moons, 1993)

j=14
With the new variables (3) it can be written as
% = %res(oy S! N - SZ) + M%E}(O’, Sa UZ’ SZ! N)’

where 3" is the same as in (5).

As in the study above, the action angle variables (¢, J)
are introduced so that 3" depends only on the actions J
and N — §,. After the introduction of the new variables,
¥ is averaged with respect to ¢ and the Hamiltonian
becomes mtegrable and reads

H(J, 0,,5.,,N)=H"(J,N—S,) + n¥#i(J, 0, 5., N).

Figure 5 describes the dynamics of such Hamiltonian in
the case of the 2/3 resonance with Neptune, and in the
limit / — 0. The perturbations of the four planets are
taken into account. Since o librates, o, is nothing but the
argument of perihelion w and the resonance in the vari-
ables (o, §,) is the Kozai resonance which concerns the
libration of w. We have studied this resonance for several
values of N and J — 0 and we have determined its width,
i.e., the values S, corresponding to the separatrices at @ =
90°, The values of S, and N are then converted to ¢ and i.

Moreover, we have computed the frequency of the node
€}, which, in the variables above, is given by —a%/oN —
a¥/as, = 0#/aH. As this is a function of o, outside of
the Kozai resonance we have computed its average value.
The comparison of the averaged frequency of £} with the
nodal secular frequencies of the planets gives the location
of the secular resonances. Their effects on the inclination
of the small body could be observed only taking into ac-
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count the /'#% term. In the present work, however, we
limit ourselves only to the determination of the location
of secular resonances inside mean motion commensurabili-
ties. In the 2/3 commensurability we have found only the
existence of the 1y resonance with the frequency sz of
Neptune’s node.

5.2, Secular Resonances

For the investigation of the dynamics in secular reso-
nances outside mean motion commensurabilities, the set
of variables (3) is let down and the usual actions L, P =
L — G, and @ = G — H conjugate to A, —w and —{)
are used,

Since the fast angles A and A; are non-resonant, the
Hamiltonian (2) is averaged over all the mean longitudes.
If the terms depending on the planetary eccentricities and
inclinations are neglected, the averaged Hamiltonian

Ko = pdy + piHth (7
is integrable, since it depends only on the argument of
perihelion w of the small body, due to its rotational invari-
ance. This Hamiltonian has been first studied by Kozai
{1962). Recently, Thomas and Morbidelii (1995) extended
Kozai’s investigation to the Kuiper belt case, and found
that the Kozai resonance can affect the motion of long-
period comets but not the one of Kuiper belt objects on
quasi-circular orbits.

In order to study the effects of order-one secular reso-
nances with the precession motion of planetary orbits, Ko-
zai’s Hamiltonian (7) is extended, taking into account the
terms e'#¢ and i'#. This introduces new time dependen-
cies in the problem, since the planetary orbits are assumed
to change with time with fundamental frequencies gs, g,
g7, and gg for the perihelia, and 54, 57, and s, for the nodes.
Therefore, we extend the phase-space of the problem, in-
troeducing new actions Gs, Gs, G-, and Gy conjugate to
wi=gst + al, wi=got + o, @) = gt + ¥, and w§ =
gst + of, and new actions Ss, S7, and Sg conjugate to
Q= set + B2, Q5 = st + B9, and 4 = st + BY. Here
a? and BY are the initial phases. The values of the initial
phases and of the frequencies can be found in Nobili
etal. (1989).

With these settings, the Hamiltonian reads

GP5EC gSGS + g&GG -+ g7G7 + gSGS + SGS() + S7S7 + SgSg
+ %Koz(&)) + Mel%f(ﬂ), w, wé’ wéy ‘El"’;, E’é)
+ ui'#i(w, Q, Qf, 05, Op), (8)

where the action variables have been omitted, for sim-
plicity.
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First, the Hamiltonian is averaged with respect to w,
since the Kozai resonance is far away in the case of the
Kuiper belt. The averaged Kozai Hamiltonian 3% de-
pends now only on the actions P and Q and therefore has
two constant frequencies g = —d#X°?/9P and s = —9¥K?/
8Q, which, following Williams (1969), are called the
“proper frequencies™ of the longitude of perihelion w and
of the node (.

To obtain Fig. 12, we now assume an isolated secular
resonance, i.e., that there exists only one resonant relation
between the planetary frequencies and the proper frequen-
cies of the small body. In the case of the 15 resonance, for
cxample, g = gg; in the casc of the 13 resonance, con-
versely, s = sz, etc.

We now average over the non-resonant planetary fre-
quencies. As shown in Morbidelli and Henrard (1991), this
provides the secular resonant models

Jeeeres = R P, Q) + 8.G, + pe'H (P, Q, w: —w) (9)

for a secular resonance with the planetary perihelion fre-
quency g., and

Feeores = HXO(P, Q) + 5.8, + wi' Wi(P, 0, 1L — Q) (10)

for a secular resonance with the planetary node frequency
s.. In the models above, instead of considering only the
perturbation given by the planet for which the frequency
g. or 5, is dominating, the perturbations of all four planets
are taken into account.

Both models are integrable, since they depend only on
one angle, i.e., the critical angle of the involved secular
resonance. Figure 12 refers to the 3 and 1 resonances,
the first computed for Q ~ # = 0, the second for P ~
¢* = 0. These models give a very accurate quantitative
description of the real resonant dynamics as long as secular
resonances are isolated (Morbidelli 1993}. In the case of
the Kuiper belt, conversely, secular resonances are not
isolated, so that the models above are just qualitative. A
two-resonance model could be introduced. For instance,
in the case of the coexistence of the vz and 14y, this two-
resonance model should be written

gpsecTes — %KDZ(P, Q) + SSSS + SSGS (ll)

+ wi'HYP, Q, QU — Q) + pe'# (P, Q, wi —~ w).

This modet is strongly non-integrable, with possibly large
chaotic regions. A detailed analysis on the chaotic dynam-
ics in the presence of the overlap of secular resonances
can be found in the work by Sidlichovsky (1990).
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6. CONCLUSIONS

From our analytical and numerical investigations of the
dynamics in the Kuiper belt, we can draw the following con-
clusions:

» The mean motion resonances of order one with Nep-
tune in the inner part of the Kuiper belt (¢ < 39 AU} are
very stable, at least for small i, and provide a mechanism
of phase-protection from close encounters with the planet.

» The 2/3 resonance with Neptune has a very complex
dynamics; however, objects deeply inside the resonance,
i.e., characterized by a small amplitude of libration, tend to
have stable orbits. This is the case for 1993SB and 1993SC.
Orbits with large amplitude of libration (as 1993RO, ac-
cording to the initial conditions in MPEC-1994R06) have
an irregular evolution due to the circulation/libration of
their argument of perihelion w, and could eventually es-
cape the 2/3 resonance and encounter Neptune.

« Outer mean motion resonances (1/2, 2/5, 1/3, etc.) are
quite regular and do not pump the eccentricity significantly,
for moderate initial ¢ and .

» Secular resonances are present in the range ¢ € [35,
36] AU and a € [40, 42] AU, at i ~ 0. The overlap of
secular resonances gives rise to large scale chaos with a
large increase in the eccentricity, which lead to Neptune-
approaching orbits.

» Non-resonant orbits are not phase-protected from
Neptune encounters and only orbits which are far enough
from Neptune can be stable. The lower limit on a for
stability depends therefore on the eccentricity. According
to Levison and Duncan (1993), if the initial eccentricity is
0.1, then only orbits with a => 42 AU can survive 1 Gyr.
The objects 1992QB1 and 1993FW have semimajor axes
larger than 43 AU. The object 19920B1 has a very regular
orbit, while 1993FW has an irregular evolution due to the
presence of a local small chaotic layer related to the 4/7
resonance and to a secondary secular resonance. In our
numerical integrations, however, the eccentricity of this
last object does not increase enough to approach Neptune
at a dangerous distance.

From these conclusions we can now speculate on the
structure of the distribution of bodies in the Kuiper belt.
We suspect the inner part of the Kuiper belt to be the
symmetric image of the outer part of the asteroid belt. In
the inner part the Kuiper belt should be depleted, apart
from the mean motion resonant regions which should be
occupied by several members. Moreover, the recent theory
by Malhotra {1995a) predicts that many bodies should have
been captured into mean motion resonances due to the
resonance sweeping caused by a slow change in Neptune’s
orbit. According to our results, most of these bodies, once
captured, would have a stable evolution. We recall that
the outer asteroid belt is completely depleted apart from
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the Hilda and the Thule groups which are in the 3/2 and
4/3 resonances with Jupiter, respectively.

Beyond 42 AU, the Kuiper belt should carry a uniform
distribution of objects. In contrast to the asteroid belt, the
Kuiper belt should not have the equivalent of ‘“Kirkwood
gaps,” since resonant effects are not strong enough.

According to this picture, it is not astonishing that the
distribution of the number of presently known objects with
respect to the semimajor axis follows a sort of Maxwellian-
like curve (Jewitt and Luun 1995). The distribution of ob-
served bodies should follow the mass distribution of the
original nebula, which is supposed to decrease as a power
law with respect to the inverse of the semimajor axis. How-
ever, in the inner part of the belt only the fraction of
volume occupied by mean motion resonances can host
lIong-lived objects. This is the reason the distribution of
Kuiper belt members decreases, as the orbit of Neptune
is approached.

The eorigin of the Jupiter family of comets is still an open
question in the light of our paper. Indeed, in the present
work we locate the regions characterized either by strong
instability or by relevant stability, but the existence of these
regions does not give a direct answer to the problem of the
origin of comets. The regions which are strongly unstable
should be, by now, empty of primordial bodies. In addition,
comets cannot come from the stable parts of the Kuiper
belt.

The numerical works {Holman and Wisdom 1993, Dun-
can 1994, Duncan ef al. 1995) show that there are orbits
in the Kuiper belt characterized by a slow “diffusion,”
which come to encounter Neptune only after some billion
of years. These orbits seem to be initially located at the
border of the regular regions (for example, they are large-
amplitude librators in mean motion resonances), so that
diffusion forces them to dive into the strongly unstable
regions, where encounters with Neptune are then possible
in a short time. Experiments show that if the test particles
have initially a uniform density over the Kuiper belt, then
the number of particles encountering Neptune at time 7
decreases approximately as 1/7.

At present, the analytic theories are not able to map
these regions and to identify all the secondary resonances
which are involved in these diffusive processes, in the spe-
cific case of the Kuiper belt. However, on the base of the
theory of Hamiltonian systems we understand that, as a
general fact, in the transition between the strongly chaotic
regions and regular regions, one must have orbits which
diffuse over all possible time scales. More precisely, going
from the strongly chaotic regions into the regular regions,
the diffusion speed should decrease as exp(—1/(xp — x)),
where x “measures” the distance from the strongly chaotic
region and x, is some parameter (typically related to the
distance from the strongly chaotic region of the first invari-
ant torus; the formula is valid, of course, only for x < x).
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Then, at time 7T, the “‘regular” region has been eroded up to
adepth x ~ x — 1/log( T} (the formula being an asymptotic
result, valid only for T & 1). Assuming that the particles
have uniform density with respect to x, and differentiating
the formula above with respect to 7 one has that the num-
ber of particles which dive at time T in the strongly chaotic
region must decrease as 1/7, which is in agreement with
what the numerical experiments in the Kuiper belt indicate.
An analogous result has been obtained numerically by
Simd et al. {1995) in the very different case of the Froeschlé
map. These theoretical considerations will be extended in
a further paper.

From the astronomical point of view, the fact that the
number of particles that encounter Neptune at time T
decreases as 1/7T means that, provided the initial density
is large enough, there should still be a significant number
of primordial bodies coming from the Kuiper belt and
encountering Neptune at the present epoch. Duncan ef al.
(1995) estimate to 109 the number of primoerdial bodies
of kilometric size, to explain the presently observed num-
ber of small inclination comets. The recent observations,
using the HST, by Cochran er af. (1995) seem to indicate
that such a large number of proto-comets should exist in
the Kuiper belt.

On the other hand, if such a large number of bodies
exist in the Kuiper belt, then collisional evolution is possi-
ble (Stern 1995b). So, a second possibility for the origin
of comets is that fragments are directly injected from the
regular regions into the strongly unstable regions during
collisional events, analogously to the mechanism that gen-
erates meteorites from the asteroid belt. A recent computa-
tion by Davis and Farinella (private communication) indi-
cates that the number of comets injected into the unstable
regions by collisions is on the same order of magnitude as
the number of primordial bodies which dive into the unsta-
ble regions due to the above-mentioned diffusion.

The situation, however, is very fluid, and further studies
and observations are necessary.

From the analysis of the first five objects, the orbits
of which have been determined, although with relevant
approximation, we believe that the majority of Kuiper belt
bodies, which are presently being discovered, are stable
members of the belt over the age of the Solar System.
Again, it is certainly too early to draw definite conclusions.
In particular, the number of known objects is, up to now,
too small, and the determination of their orbits is too poor.
Our results underline the necessity of anincreasing number
of observations in order to improve the number of known
objects. In particular, it is crucial to have astrometric cam-
paigns to determine with accuracy their orbit.
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